--- license: cc-by-nc-4.0 language: - tr pipeline_tag: text-generation --- # Model Card for Model ID Gemma-2b fine-tuned with Turkish Instruction-Response pairs. ## Restrictions Gemma is provided under and subject to the Gemma Terms of Use found at ai.google.dev/gemma/terms Please refer to the gemma use restrictions before start using the model. https://ai.google.dev/gemma/terms#3.2-use ## Using model ```Python import torch,re from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "erythropygia/Gemma2b-Turkish-Instruction" model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={"":0}) tokenizer = AutoTokenizer.from_pretrained(model_id, add_eos_token=True, padding_side="left") def get_completion(query: str, model, tokenizer) -> str: device = "cuda:0" prompt_template = """ user Alt satırdaki soruya cevap ver:\n {query} \nmodel """ prompt = prompt_template.format(query=query) encodeds = tokenizer(prompt, return_tensors="pt", add_special_tokens=True) model_inputs = encodeds.to(device) #max_new_tokens = 200, temperature = 0.9, repetition_penalty = 0.5, disabled #num_return_sequences=1, max_length = 256, generated_ids = model.generate(**model_inputs, max_new_tokens = 256, do_sample=True, pad_token_id=tokenizer.eos_token_id) decoded = tokenizer.decode(generated_ids[0], skip_special_tokens=False) decoded = re.sub(r'<(end_of_turn|start_of_turn|eos|bos)>[^<]*$', '', decoded) decoded = re.sub(r'<(end_of_turn|start_of_turn|eos|bos)>', '', decoded) return decoded.strip() result = get_completion(query="int türünde üç parametre alan ve bunların toplamını döndüren bir işlev oluşturun.", model=model, tokenizer=tokenizer) print(result) ``` ## Training Details ### Training Data - Dataset size: ~75k instruction-response pair. ### Training Procedure #### Training Hyperparameters - **Epochs:** 1 - **Context length:** 1024 - **LoRA Rank:** 32 - **LoRA Alpha:** 64 - **LoRA Dropout:** 0.05