eryk-mazus commited on
Commit
0359b0d
1 Parent(s): 68199bd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -217
README.md CHANGED
@@ -1,230 +1,30 @@
1
  ---
 
2
  base_model: eryk-mazus/tinyllama-with-custom-tokenizer
3
- tags:
4
- - generated_from_trainer
5
- model-index:
6
- - name: workspace/tmp/
7
- results: []
8
- ---
9
-
10
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
- should probably proofread and complete it, then remove this comment. -->
12
-
13
- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
14
- <details><summary>See axolotl config</summary>
15
-
16
- axolotl version: `0.3.0`
17
- ```yaml
18
- base_model: eryk-mazus/tinyllama-with-custom-tokenizer
19
-
20
- model_type: LlamaForCausalLM
21
- tokenizer_type: AutoTokenizer
22
- is_llama_derived_model: true
23
-
24
- load_in_8bit: false
25
- load_in_4bit: false
26
- strict: false
27
-
28
  datasets:
29
- - path: eryk-mazus/polka-pretrain-en-pl-v1
30
- type: completion # format from earlier
31
- field: text # Optional[str] default: text, field to use for completion data
32
-
33
- dataset_prepared_path:
34
- val_set_size: 0.05
35
- output_dir: /workspace/tmp/
36
-
37
- sequence_len: 2048
38
- sample_packing: false
39
 
40
- adapter:
41
- lora_model_dir:
42
- lora_r: 32
43
- lora_alpha: 16
44
- lora_dropout: 0.05
45
- lora_target_linear: true
46
- lora_fan_in_fan_out:
47
 
48
- wandb_project: polka
49
- wandb_entity:
50
- wandb_watch:
51
- wandb_name:
52
- wandb_log_model:
53
 
54
- gradient_accumulation_steps: 2
55
- micro_batch_size: 4
56
- num_epochs: 1
57
- lr_scheduler:
58
- learning_rate: 0.00005
59
 
60
- optimizer: adamw_torch
61
- adam_beta1: 0.9
62
- adam_beta2: 0.95
63
- adam_epsilon: 0.00001
64
- max_grad_norm: 1.0
65
 
66
- train_on_inputs: false
67
- group_by_length: false
68
- bf16: true
69
- fp16: false
70
- tf32: false
71
 
72
- warmup_steps: 0
73
- gradient_checkpointing: true
74
- early_stopping_patience:
75
- resume_from_checkpoint:
76
- local_rank:
77
- logging_steps: 1
78
- xformers_attention:
79
- flash_attention: true
80
 
81
- eval_steps: 1000
82
- save_steps: 1000
83
- save_total_limit: 2
84
 
85
- debug:
86
- deepspeed:
87
- fsdp:
88
- fsdp_config:
89
- special_tokens:
90
- bos_token: "<s>"
91
- eos_token: "</s>"
92
- unk_token: "<unk>"
93
 
 
 
94
  ```
95
-
96
- </details><br>
97
-
98
- # workspace/tmp/
99
-
100
- This model is a fine-tuned version of [eryk-mazus/tinyllama-with-custom-tokenizer](https://huggingface.co/eryk-mazus/tinyllama-with-custom-tokenizer) on the None dataset.
101
- It achieves the following results on the evaluation set:
102
- - Loss: 1.8795
103
-
104
- ## Model description
105
-
106
- More information needed
107
-
108
- ## Intended uses & limitations
109
-
110
- More information needed
111
-
112
- ## Training and evaluation data
113
-
114
- More information needed
115
-
116
- ## Training procedure
117
-
118
- ### Training hyperparameters
119
-
120
- The following hyperparameters were used during training:
121
- - learning_rate: 5e-05
122
- - train_batch_size: 4
123
- - eval_batch_size: 4
124
- - seed: 42
125
- - distributed_type: multi-GPU
126
- - num_devices: 8
127
- - gradient_accumulation_steps: 2
128
- - total_train_batch_size: 64
129
- - total_eval_batch_size: 32
130
- - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
131
- - lr_scheduler_type: cosine
132
- - num_epochs: 1
133
-
134
- ### Training results
135
-
136
- | Training Loss | Epoch | Step | Validation Loss |
137
- |:-------------:|:-----:|:-----:|:---------------:|
138
- | 3.0469 | 0.01 | 1000 | 3.0497 |
139
- | 2.664 | 0.02 | 2000 | 2.6586 |
140
- | 2.5018 | 0.04 | 3000 | 2.4944 |
141
- | 2.5955 | 0.05 | 4000 | 2.3988 |
142
- | 2.2783 | 0.06 | 5000 | 2.3338 |
143
- | 2.3171 | 0.07 | 6000 | 2.2852 |
144
- | 2.189 | 0.08 | 7000 | 2.2459 |
145
- | 2.3594 | 0.09 | 8000 | 2.2153 |
146
- | 2.1882 | 0.11 | 9000 | 2.1882 |
147
- | 2.2699 | 0.12 | 10000 | 2.1659 |
148
- | 2.1273 | 0.13 | 11000 | 2.1469 |
149
- | 2.1041 | 0.14 | 12000 | 2.1291 |
150
- | 2.1698 | 0.15 | 13000 | 2.1138 |
151
- | 2.2126 | 0.16 | 14000 | 2.1004 |
152
- | 2.1065 | 0.18 | 15000 | 2.0886 |
153
- | 2.0589 | 0.19 | 16000 | 2.0764 |
154
- | 2.0537 | 0.2 | 17000 | 2.0663 |
155
- | 1.9746 | 0.21 | 18000 | 2.0569 |
156
- | 2.2128 | 0.22 | 19000 | 2.0477 |
157
- | 2.1342 | 0.23 | 20000 | 2.0393 |
158
- | 2.0643 | 0.25 | 21000 | 2.0312 |
159
- | 2.2776 | 0.26 | 22000 | 2.0240 |
160
- | 1.94 | 0.27 | 23000 | 2.0173 |
161
- | 1.8249 | 0.28 | 24000 | 2.0111 |
162
- | 1.966 | 0.29 | 25000 | 2.0049 |
163
- | 1.9351 | 0.31 | 26000 | 1.9994 |
164
- | 1.9563 | 0.32 | 27000 | 1.9947 |
165
- | 1.9496 | 0.33 | 28000 | 1.9878 |
166
- | 2.0127 | 0.34 | 29000 | 1.9835 |
167
- | 2.0043 | 0.35 | 30000 | 1.9794 |
168
- | 2.0227 | 0.36 | 31000 | 1.9748 |
169
- | 1.9308 | 0.38 | 32000 | 1.9704 |
170
- | 1.9183 | 0.39 | 33000 | 1.9655 |
171
- | 1.9919 | 0.4 | 34000 | 1.9620 |
172
- | 1.9351 | 0.41 | 35000 | 1.9580 |
173
- | 1.9103 | 0.42 | 36000 | 1.9537 |
174
- | 1.7521 | 0.43 | 37000 | 1.9512 |
175
- | 1.9567 | 0.45 | 38000 | 1.9454 |
176
- | 2.022 | 0.46 | 39000 | 1.9426 |
177
- | 1.8526 | 0.47 | 40000 | 1.9398 |
178
- | 1.8912 | 0.48 | 41000 | 1.9370 |
179
- | 2.0546 | 0.49 | 42000 | 1.9334 |
180
- | 2.0607 | 0.5 | 43000 | 1.9308 |
181
- | 2.0078 | 0.52 | 44000 | 1.9279 |
182
- | 1.889 | 0.53 | 45000 | 1.9253 |
183
- | 1.8587 | 0.54 | 46000 | 1.9222 |
184
- | 1.8571 | 0.55 | 47000 | 1.9199 |
185
- | 1.8806 | 0.56 | 48000 | 1.9178 |
186
- | 1.8483 | 0.58 | 49000 | 1.9150 |
187
- | 1.7862 | 0.59 | 50000 | 1.9130 |
188
- | 1.8989 | 0.6 | 51000 | 1.9102 |
189
- | 1.9389 | 0.61 | 52000 | 1.9083 |
190
- | 1.9301 | 0.62 | 53000 | 1.9065 |
191
- | 1.9522 | 0.63 | 54000 | 1.9046 |
192
- | 1.883 | 0.65 | 55000 | 1.9027 |
193
- | 1.9647 | 0.66 | 56000 | 1.9002 |
194
- | 1.9284 | 0.67 | 57000 | 1.8988 |
195
- | 1.8836 | 0.68 | 58000 | 1.8974 |
196
- | 1.8472 | 0.69 | 59000 | 1.8956 |
197
- | 2.1232 | 0.7 | 60000 | 1.8945 |
198
- | 1.8571 | 0.72 | 61000 | 1.8933 |
199
- | 1.8043 | 0.73 | 62000 | 1.8918 |
200
- | 1.9468 | 0.74 | 63000 | 1.8906 |
201
- | 1.9173 | 0.75 | 64000 | 1.8896 |
202
- | 1.7762 | 0.76 | 65000 | 1.8880 |
203
- | 2.032 | 0.77 | 66000 | 1.8876 |
204
- | 1.9362 | 0.79 | 67000 | 1.8867 |
205
- | 1.8308 | 0.8 | 68000 | 1.8854 |
206
- | 1.9289 | 0.81 | 69000 | 1.8847 |
207
- | 1.9467 | 0.82 | 70000 | 1.8841 |
208
- | 1.8798 | 0.83 | 71000 | 1.8835 |
209
- | 1.8868 | 0.84 | 72000 | 1.8828 |
210
- | 1.8905 | 0.86 | 73000 | 1.8820 |
211
- | 1.9508 | 0.87 | 74000 | 1.8816 |
212
- | 1.7983 | 0.88 | 75000 | 1.8813 |
213
- | 1.7693 | 0.89 | 76000 | 1.8806 |
214
- | 1.7371 | 0.9 | 77000 | 1.8804 |
215
- | 1.8705 | 0.92 | 78000 | 1.8802 |
216
- | 1.8707 | 0.93 | 79000 | 1.8799 |
217
- | 1.9113 | 0.94 | 80000 | 1.8799 |
218
- | 2.1314 | 0.95 | 81000 | 1.8797 |
219
- | 1.9132 | 0.96 | 82000 | 1.8795 |
220
- | 2.0349 | 0.97 | 83000 | 1.8796 |
221
- | 1.7939 | 0.99 | 84000 | 1.8795 |
222
- | 1.8357 | 1.0 | 85000 | 1.8795 |
223
-
224
-
225
- ### Framework versions
226
-
227
- - Transformers 4.36.2
228
- - Pytorch 2.1.2+cu121
229
- - Datasets 2.16.1
230
- - Tokenizers 0.15.0
 
1
  ---
2
+ license: apache-2.0
3
  base_model: eryk-mazus/tinyllama-with-custom-tokenizer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  datasets:
5
+ - allenai/MADLAD-400
6
+ - eryk-mazus/polka-pretrain-en-pl-v1
7
+ language:
8
+ - pl
9
+ - en
10
+ pipeline_tag: text-generation
11
+ ---
 
 
 
12
 
13
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61bf0e11c88f3fd22f654059/EMSrPEzAFkjY9nvbaJoC3.png)
 
 
 
 
 
 
14
 
15
+ # Polka-1.1b
 
 
 
 
16
 
 
 
 
 
 
17
 
18
+ `polka-1.1b` takes the [TinyLlama-1.1B](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) model and enhances it by continuing pretraining on an additional **5.7 billion Polish tokens**, primarily sourced from the [MADLAD-400](https://arxiv.org/abs/2309.04662) dataset. The tokens were sampled in a 10:1 ratio between Polish and English shards using [DSIR](https://github.com/p-lambda/dsir). Furthermore, Polka extends the TinyLlama tokenizer's vocabulary to 43,882 tokens, improving its efficiency for generating Polish text.
 
 
 
 
19
 
20
+ The training took 425 RTX 4090 GPU hours on a single 8 x RTX 4090 machine with DeepSpeed ZeRO-2.
 
 
 
 
21
 
22
+ ## Notes
 
 
 
 
 
 
 
23
 
24
+ ...
 
 
25
 
26
+ ## Sample code
 
 
 
 
 
 
 
27
 
28
+ ```python
29
+ ...
30
  ```