--- library_name: peft license: other base_model: facebook/opt-350m tags: - axolotl - generated_from_trainer model-index: - name: bab80e07-cf92-4525-abe6-bf0d64212509 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: qlora auto_resume_from_checkpoints: true base_model: facebook/opt-350m bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 9b3a5919e996b43f_train_data.json ds_type: json format: custom path: /workspace/input_data/9b3a5919e996b43f_train_data.json type: field_input: thinking field_instruction: prompt field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: error577/bab80e07-cf92-4525-abe6-bf0d64212509 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: null micro_batch_size: 2 mlflow_experiment_name: /tmp/9b3a5919e996b43f_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch_4bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.005 wandb_entity: null wandb_mode: online wandb_name: ef00d239-571d-44fb-ae4b-a020df7f09b1 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ef00d239-571d-44fb-ae4b-a020df7f09b1 warmup_steps: 30 weight_decay: 0.0 xformers_attention: null ```

# bab80e07-cf92-4525-abe6-bf0d64212509 This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 1.7855 | | 5.1691 | 0.0537 | 100 | 1.2518 | | 4.7876 | 0.1075 | 200 | 1.1656 | | 4.3157 | 0.1612 | 300 | 1.0780 | | 4.2875 | 0.2150 | 400 | 1.0325 | | 4.4765 | 0.2687 | 500 | 0.9903 | | 4.1246 | 0.3225 | 600 | 0.9688 | | 3.8197 | 0.3762 | 700 | 0.9726 | | 3.8941 | 0.4300 | 800 | 0.9635 | | 4.1191 | 0.4837 | 900 | 0.9212 | | 3.6611 | 0.5375 | 1000 | 0.9328 | | 3.5027 | 0.5912 | 1100 | 0.8896 | | 3.4397 | 0.6450 | 1200 | 0.9109 | | 3.5156 | 0.6987 | 1300 | 0.8761 | | 3.7601 | 0.7525 | 1400 | 0.8751 | | 3.4886 | 0.8062 | 1500 | 0.8606 | | 3.1389 | 0.8600 | 1600 | 0.8488 | | 3.2549 | 0.9137 | 1700 | 0.8776 | | 3.4852 | 0.9675 | 1800 | 0.8418 | | 3.3517 | 1.0212 | 1900 | 0.8019 | | 3.1547 | 1.0750 | 2000 | 0.8292 | | 3.1288 | 1.1287 | 2100 | 0.7916 | | 2.9624 | 1.1825 | 2200 | 0.8047 | | 3.1523 | 1.2362 | 2300 | 0.7841 | | 3.01 | 1.2900 | 2400 | 0.7736 | | 3.2158 | 1.3437 | 2500 | 0.7726 | | 3.0904 | 1.3975 | 2600 | 0.7758 | | 2.9655 | 1.4512 | 2700 | 0.7682 | | 3.1154 | 1.5050 | 2800 | 0.7612 | | 3.199 | 1.5587 | 2900 | 0.7508 | | 3.1015 | 1.6125 | 3000 | 0.7463 | | 2.9626 | 1.6662 | 3100 | 0.7425 | | 3.0086 | 1.7200 | 3200 | 0.7358 | | 2.9609 | 1.7737 | 3300 | 0.7343 | | 2.7884 | 1.8275 | 3400 | 0.7286 | | 2.9546 | 1.8812 | 3500 | 0.7227 | | 2.8298 | 1.9350 | 3600 | 0.7203 | | 2.8598 | 1.9887 | 3700 | 0.7133 | | 2.5154 | 2.0425 | 3800 | 0.7121 | | 2.6962 | 2.0962 | 3900 | 0.7085 | | 2.7309 | 2.1500 | 4000 | 0.7024 | | 2.6869 | 2.2037 | 4100 | 0.7035 | | 2.7636 | 2.2575 | 4200 | 0.6971 | | 2.7232 | 2.3112 | 4300 | 0.6901 | | 2.8095 | 2.3650 | 4400 | 0.6923 | | 2.725 | 2.4187 | 4500 | 0.6882 | | 2.793 | 2.4725 | 4600 | 0.6892 | | 2.6342 | 2.5262 | 4700 | 0.6852 | | 2.8126 | 2.5800 | 4800 | 0.6832 | | 2.4884 | 2.6337 | 4900 | 0.6812 | | 2.6875 | 2.6874 | 5000 | 0.6800 | | 2.7025 | 2.7412 | 5100 | 0.6811 | | 2.6606 | 2.7949 | 5200 | 0.6808 | | 2.5986 | 2.8487 | 5300 | 0.6809 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1