--- library_name: peft license: other base_model: facebook/opt-125m tags: - axolotl - generated_from_trainer model-index: - name: 5f0159c4-1008-4527-9092-4ee6e6b9e663 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: qlora auto_resume_from_checkpoints: true base_model: facebook/opt-125m bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 47b36a24df61e9c5_train_data.json ds_type: json format: custom path: /workspace/input_data/47b36a24df61e9c5_train_data.json type: field_input: documents field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: true hub_model_id: error577/5f0159c4-1008-4527-9092-4ee6e6b9e663 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0003 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.3 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 128 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: null micro_batch_size: 1 mlflow_experiment_name: /tmp/47b36a24df61e9c5_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.02 wandb_entity: null wandb_mode: online wandb_name: a6924886-18eb-47b1-8a4b-24becc99648c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a6924886-18eb-47b1-8a4b-24becc99648c warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 5f0159c4-1008-4527-9092-4ee6e6b9e663 This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 47.7848 | 0.0004 | 1 | 3.0276 | | 34.159 | 0.0202 | 50 | 2.9019 | | 39.2367 | 0.0405 | 100 | 2.5922 | | 52.0151 | 0.0607 | 150 | 2.5356 | | 33.4878 | 0.0809 | 200 | 2.5099 | | 25.6957 | 0.1012 | 250 | 2.4814 | | 27.5454 | 0.1214 | 300 | 2.4519 | | 32.6855 | 0.1417 | 350 | 2.4207 | | 25.3411 | 0.1619 | 400 | 2.4211 | | 27.4427 | 0.1821 | 450 | 2.4128 | | 34.6101 | 0.2024 | 500 | 2.3944 | | 23.8259 | 0.2226 | 550 | 2.3888 | | 23.7378 | 0.2428 | 600 | 2.3808 | | 27.431 | 0.2631 | 650 | 2.3735 | | 26.069 | 0.2833 | 700 | 2.3755 | | 20.5981 | 0.3035 | 750 | 2.3722 | | 23.1821 | 0.3238 | 800 | 2.3646 | | 20.5374 | 0.3440 | 850 | 2.3509 | | 22.8665 | 0.3642 | 900 | 2.3556 | | 21.9577 | 0.3845 | 950 | 2.3418 | | 20.0986 | 0.4047 | 1000 | 2.3399 | | 29.616 | 0.4250 | 1050 | 2.3433 | | 25.8536 | 0.4452 | 1100 | 2.3335 | | 18.732 | 0.4654 | 1150 | 2.3298 | | 21.2083 | 0.4857 | 1200 | 2.3250 | | 20.2594 | 0.5059 | 1250 | 2.3195 | | 14.3002 | 0.5261 | 1300 | 2.3196 | | 24.714 | 0.5464 | 1350 | 2.3132 | | 22.0257 | 0.5666 | 1400 | 2.3093 | | 16.7176 | 0.5868 | 1450 | 2.3012 | | 15.5525 | 0.6071 | 1500 | 2.3052 | | 20.5451 | 0.6273 | 1550 | 2.2970 | | 31.716 | 0.6475 | 1600 | 2.2905 | | 23.2587 | 0.6678 | 1650 | 2.2938 | | 16.72 | 0.6880 | 1700 | 2.2914 | | 19.7095 | 0.7083 | 1750 | 2.2868 | | 25.7639 | 0.7285 | 1800 | 2.2802 | | 30.8813 | 0.7487 | 1850 | 2.2860 | | 25.8737 | 0.7690 | 1900 | 2.2825 | | 21.8546 | 0.7892 | 1950 | 2.2857 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1