--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-IDMGSP-danish results: [] datasets: - ernlavr/IDMGSP-danish language: - da --- # xlm-roberta-base-IDMGSP-danish This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [ernlavr/IDMGSP-danish](https://huggingface.co/datasets/ernlavr/IDMGSP-danish) dataset. It achieves the following results on the evaluation set: - Loss: 1.0276 - Accuracy: {'accuracy': 0.8530452362901187} - F1: {'f1': 0.8630636995172495} ## Intended uses & limitations Binary classification, label `0` - text is not AI generated; label `1` - text is AI generated ## Training and evaluation data [ernlavr/IDMGSP-danish](https://huggingface.co/datasets/ernlavr/IDMGSP-danish) dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------:| | 0.3631 | 1.0 | 496 | 0.9902 | {'accuracy': 0.5959059893858984} | {'f1': 0.7104310032596887} | | 0.3208 | 2.0 | 992 | 1.0736 | {'accuracy': 0.7261814505938843} | {'f1': 0.780245411215901} | | 0.2191 | 3.0 | 1488 | 0.3496 | {'accuracy': 0.8664392216325499} | {'f1': 0.8717077315208156} | | 0.1548 | 4.0 | 1984 | 0.5604 | {'accuracy': 0.8155168056608542} | {'f1': 0.8378858538751943} | | 0.1127 | 5.0 | 2480 | 0.4164 | {'accuracy': 0.8641647712913824} | {'f1': 0.871056735036584} | | 0.1372 | 6.0 | 2976 | 0.5515 | {'accuracy': 0.8822340156684357} | {'f1': 0.8833833833833834} | | 0.0279 | 7.0 | 3472 | 0.7203 | {'accuracy': 0.8458428102097548} | {'f1': 0.8573766658873042} | | 0.0456 | 8.0 | 3968 | 0.8584 | {'accuracy': 0.8498862774829417} | {'f1': 0.8604651162790697} | | 0.0095 | 9.0 | 4464 | 0.9214 | {'accuracy': 0.8512762193580996} | {'f1': 0.861415283174379} | | 0.0076 | 10.0 | 4960 | 1.0276 | {'accuracy': 0.8530452362901187} | {'f1': 0.8630636995172495} | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.1 - Datasets 2.14.6 - Tokenizers 0.14.1