ernestum commited on
Commit
0d276d3
1 Parent(s): b7846bf

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - seals/Swimmer-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: seals/Swimmer-v1
16
+ type: seals/Swimmer-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 292.84 +/- 3.69
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **seals/Swimmer-v1**
25
+ This is a trained model of a **PPO** agent playing **seals/Swimmer-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/Swimmer-v1 -orga ernestum -f logs/
47
+ python -m rl_zoo3.enjoy --algo ppo --env seals/Swimmer-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/Swimmer-v1 -orga ernestum -f logs/
53
+ python -m rl_zoo3.enjoy --algo ppo --env seals/Swimmer-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ppo --env seals/Swimmer-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ppo --env seals/Swimmer-v1 -f logs/ -orga ernestum
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 8),
66
+ ('clip_range', 0.1),
67
+ ('ent_coef', 5.167107294612664e-08),
68
+ ('gae_lambda', 0.95),
69
+ ('gamma', 0.999),
70
+ ('learning_rate', 0.0001214437022727675),
71
+ ('max_grad_norm', 2),
72
+ ('n_epochs', 20),
73
+ ('n_steps', 2048),
74
+ ('n_timesteps', 1000000.0),
75
+ ('normalize',
76
+ {'gamma': 0.999, 'norm_obs': False, 'norm_reward': True}),
77
+ ('policy', 'MlpPolicy'),
78
+ ('policy_kwargs',
79
+ {'activation_fn': <class 'torch.nn.modules.activation.Tanh'>,
80
+ 'features_extractor_class': <class 'imitation.policies.base.NormalizeFeaturesExtractor'>,
81
+ 'net_arch': [{'pi': [64, 64], 'vf': [64, 64]}]}),
82
+ ('vf_coef', 0.6162112311062333),
83
+ ('normalize_kwargs',
84
+ {'norm_obs': {'gamma': 0.999,
85
+ 'norm_obs': False,
86
+ 'norm_reward': True},
87
+ 'norm_reward': False})])
88
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - conf_file
5
+ - hyperparams/python/ppo.py
6
+ - - device
7
+ - cpu
8
+ - - env
9
+ - seals/Swimmer-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 0
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - - seals
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - gymnasium_models
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - 4
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 4235492323
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
config.yml ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 8
4
+ - - clip_range
5
+ - 0.1
6
+ - - ent_coef
7
+ - 5.167107294612664e-08
8
+ - - gae_lambda
9
+ - 0.95
10
+ - - gamma
11
+ - 0.999
12
+ - - learning_rate
13
+ - 0.0001214437022727675
14
+ - - max_grad_norm
15
+ - 2
16
+ - - n_epochs
17
+ - 20
18
+ - - n_steps
19
+ - 2048
20
+ - - n_timesteps
21
+ - 1000000.0
22
+ - - normalize
23
+ - gamma: 0.999
24
+ norm_obs: false
25
+ norm_reward: true
26
+ - - policy
27
+ - MlpPolicy
28
+ - - policy_kwargs
29
+ - activation_fn: !!python/name:torch.nn.modules.activation.Tanh ''
30
+ features_extractor_class: !!python/name:imitation.policies.base.NormalizeFeaturesExtractor ''
31
+ net_arch:
32
+ - pi:
33
+ - 64
34
+ - 64
35
+ vf:
36
+ - 64
37
+ - 64
38
+ - - vf_coef
39
+ - 0.6162112311062333
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-seals-Swimmer-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb13217ac894c16de99d2b425d22c644f63cd42cb0294d52971beff390a0b4b4
3
+ size 151857
ppo-seals-Swimmer-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
ppo-seals-Swimmer-v1/data ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd8a5aa8040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd8a5aa80d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd8a5aa8160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd8a5aa81f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd8a5aa8280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd8a5aa8310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd8a5aa83a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd8a5aa8430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd8a5aa84c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd8a5aa8550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd8a5aa85e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd8a5aa8670>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fd8a5a85b10>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVuQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJR9lCiMAnBplF2UKEtAS0BljAJ2ZpRdlChLQEtAZXWMGGZlYXR1cmVzX2V4dHJhY3Rvcl9jbGFzc5SMF2ltaXRhdGlvbi5wb2xpY2llcy5iYXNllIwaTm9ybWFsaXplRmVhdHVyZXNFeHRyYWN0b3KUk5R1Lg==",
26
+ "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
27
+ "net_arch": {
28
+ "pi": [
29
+ 64,
30
+ 64
31
+ ],
32
+ "vf": [
33
+ 64,
34
+ 64
35
+ ]
36
+ },
37
+ "features_extractor_class": "<class 'imitation.policies.base.NormalizeFeaturesExtractor'>"
38
+ },
39
+ "num_timesteps": 1001472,
40
+ "_total_timesteps": 1000000,
41
+ "_num_timesteps_at_start": 0,
42
+ "seed": 0,
43
+ "action_noise": null,
44
+ "start_time": 1694771152327280081,
45
+ "learning_rate": {
46
+ ":type:": "<class 'function'>",
47
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPx/V8usTiESFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
48
+ },
49
+ "tensorboard_log": null,
50
+ "_last_obs": null,
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVxQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZQAAAAAAAAABQBIm89wq4/GOJMFc8pkr8aNOCJB36qv6BBQXKG5re/pD/MlYnCt78obMH7HWqSv9gCKDlRC4s/zWb9Az+4r7/s6vtriXugP5gCHvU2qIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwqGlIwBQ5R0lFKULg=="
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": false,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": -0.0014719999999999178,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJvDW07bL6MAWyUTegDjAF0lEdAtR3xL9MsYnV9lChoBkdAcoGj/+85CGgHTegDaAhHQLUehdjXnQp1fZQoaAZHQHIvTBMzuWtoB03oA2gIR0C1Ki5LRKHxdX2UKGgGR0BydphuwX67aAdN6ANoCEdAtSq/0K7ZnXV9lChoBkdAclTPWxyGSWgHTegDaAhHQLU2fMm4RVZ1fZQoaAZHQHJAOhsZYPpoB03oA2gIR0C1Nw+iFj/ddX2UKGgGR0BymofGMn7YaAdN6ANoCEdAtUK5pqREGHV9lChoBkdAcb2nF5v9+GgHTegDaAhHQLVDTmzjWCp1fZQoaAZHQHKH6Qmu1WtoB03oA2gIR0C1TvrAP/aQdX2UKGgGR0ByXg+mm+CcaAdN6ANoCEdAtU+OHrQgLnV9lChoBkdAcp43JxNqQGgHTegDaAhHQLVbN4xk/bF1fZQoaAZHQHJveq7yxzJoB03oA2gIR0C1W8tknTiLdX2UKGgGR0ByXjJ6po9LaAdN6ANoCEdAtWc2lBQem3V9lChoBkdAcijwSamXPmgHTegDaAhHQLVnyI9TxXp1fZQoaAZHQHKNYAKfFrFoB03oA2gIR0C1c5eU+s5odX2UKGgGR0ByCGQwK0D2aAdN6ANoCEdAtXQpzvJA+3V9lChoBkdAcm4UQ04zamgHTegDaAhHQLWADawUxmF1fZQoaAZHQHHaOIInjQ1oB03oA2gIR0C1gKDLfUF0dX2UKGgGR0ByaTPldTo/aAdN6ANoCEdAtYxOahHsknV9lChoBkdAcqbul41P32gHTegDaAhHQLWM4jz7MxJ1fZQoaAZHQHI+MfFJg9hoB03oA2gIR0C1mJG3F1jidX2UKGgGR0ByySBpYcNpaAdN6ANoCEdAtZkk3eenRHV9lChoBkdActeQOnVG1GgHTegDaAhHQLWkyeXRgJF1fZQoaAZHQHJ/e6ErXlNoB03oA2gIR0C1pVwhnrY5dX2UKGgGR0ByFXkxREWqaAdN6ANoCEdAtbDygJ1JUnV9lChoBkdAcrmAiml67mgHTegDaAhHQLWxhq2jO9p1fZQoaAZHQHKh/WH1vl5oB03oA2gIR0C1vTMjzI3jdX2UKGgGR0Byp1zzVc2SaAdN6ANoCEdAtb3Fsfq5b3V9lChoBkdAcrzc2BJ7LWgHTegDaAhHQLXJdVbA1vV1fZQoaAZHQHKhdVJcxCZoB03oA2gIR0C1ygkXtShrdX2UKGgGR0ByT9mWdEsraAdN6ANoCEdAtdWywSrYG3V9lChoBkdAcpoR1HOKO2gHTegDaAhHQLXWRmOU+s51fZQoaAZHQHLPu5avA45oB03oA2gIR0C14edB4UvgdX2UKGgGR0ByXbdTHbRGaAdN6ANoCEdAteJ4zJp35nV9lChoBkdAcn7KlpGnXWgHTegDaAhHQLXuJ1schkl1fZQoaAZHQHLEl5WzWwxoB03oA2gIR0C17rtYbKigdX2UKGgGR0ByUmmgrYoRaAdN6ANoCEdAtfprxkNF0HV9lChoBkdAclP4keIVM2gHTegDaAhHQLX6/cYqG1x1fZQoaAZHQHJ9mSyMUAVoB03oA2gIR0C1+5BEORT1dX2UKGgGR0BytJ+1Bt1qaAdN6ANoCEdAtgc6X6ZYxXV9lChoBkdAcrcl05lvqGgHTegDaAhHQLYHzTzND+l1fZQoaAZHQHKDjbvgFX9oB03oA2gIR0C2E3mKQ7tBdX2UKGgGR0BywJLsa86FaAdN6ANoCEdAthQMrFwT/XV9lChoBkdAcihmCAc1fmgHTegDaAhHQLYfvNliBoV1fZQoaAZHQHIxKwY+B6NoB03oA2gIR0C2IFAj2SMcdX2UKGgGR0By2keKbaysaAdN6ANoCEdAtivz8hs673V9lChoBkdAcnpERaouPGgHTegDaAhHQLYshyQgcLl1fZQoaAZHQHLIkdq+JxhoB03oA2gIR0C2OCOVkc0cdX2UKGgGR0ByuzIikftAaAdN6ANoCEdAtji3gKnei3V9lChoBkdAcrjV8kUsWmgHTegDaAhHQLZEYHXEqDt1fZQoaAZHQHLFArQPZqVoB03oA2gIR0C2RPQQcxTLdX2UKGgGR0Byk5v863iJaAdN6ANoCEdAtlClz/6wdXV9lChoBkdAcp7cFyJbdWgHTegDaAhHQLZROq0dBB11fZQoaAZHQHKmXwkPcztoB03oA2gIR0C2XOrjDKoydX2UKGgGR0Bylco2GZeBaAdN6ANoCEdAtl18C7sfJXV9lChoBkdAcrvuSOinHmgHTegDaAhHQLZpKXhfjS51fZQoaAZHQHJBvrSmZVpoB03oA2gIR0C2ab3O0LMLdX2UKGgGR0By5rTAnDziaAdN6ANoCEdAtnVxTVDrq3V9lChoBkdAcu0oScslLWgHTegDaAhHQLZ2AwwCbMJ1fZQoaAZHQHK73xri2lVoB03oA2gIR0C2gbk5uIhydX2UKGgGR0BygwpmVZ9vaAdN6ANoCEdAtoJM5BC2MXV9lChoBkdAcm3/DtPYWmgHTegDaAhHQLaN8Gc4HX51fZQoaAZHQHKjGWdEsrdoB03oA2gIR0C2joNRNyo5dX2UKGgGR0ByTOFTNt65aAdN6ANoCEdAtpoxuKoAGXV9lChoBkdAclwgKF7D22gHTegDaAhHQLaaxXZGrjp1fZQoaAZHQHKFgQcxTKloB03oA2gIR0C2pnGF8G9pdX2UKGgGR0Byb2ejEehgaAdN6ANoCEdAtqcDqu8sc3V9lChoBkdAcg87p3X7L2gHTegDaAhHQLayurvLHMl1fZQoaAZHQHJu9WdVea9oB03oA2gIR0C2s07P+n63dX2UKGgGR0ByYO7TUiIMaAdN6ANoCEdAtr8TQeFL4HV9lChoBkdAcp7jgQ6IWWgHTegDaAhHQLa/pikfs/p1fZQoaAZHQHJa+f7JnxtoB03oA2gIR0C2y1mIj4YadX2UKGgGR0ByphvsJIDpaAdN6ANoCEdAtsvt5kbxVnV9lChoBkdAcmZITGo73mgHTegDaAhHQLbXnkrwvxp1fZQoaAZHQHKdv7N0NjNoB03oA2gIR0C22DKIFeOXdX2UKGgGR0BysJnxri2laAdN6ANoCEdAtuPheUpuuXV9lChoBkdAclRurIYFaGgHTegDaAhHQLbkdGJvYOF1fZQoaAZHQHKmDNliBoVoB03oA2gIR0C28BjHXEqEdX2UKGgGR0BycngaWHDaaAdN6ANoCEdAtvCr6SDAanV9lChoBkdAcn1nMt9QXWgHTegDaAhHQLb8TPAwfyR1fZQoaAZHQHJsrJKaoddoB03oA2gIR0C2/N7uc+aCdX2UKGgGR0ByvAC0WuYAaAdN6ANoCEdAtv1xLEk0JnV9lChoBkdAcm/mthd+omgHTegDaAhHQLcJFSRr8BN1fZQoaAZHQHG6iZ4Oc2BoB03oA2gIR0C3CagTmGM5dX2UKGgGR0BykKlWOp84aAdN6ANoCEdAtxVSiN83M3V9lChoBkdAcnB7Ackt3GgHTegDaAhHQLcV5V/c32p1fZQoaAZHQHJqUpiI+GJoB03oA2gIR0C3IYOt8uzydX2UKGgGR0ByC3SQYDT0aAdN6ANoCEdAtyITc580DXV9lChoBkdAcmQK0D2alWgHTegDaAhHQLctx/IKc/d1fZQoaAZHQHJNCamXPZ9oB03oA2gIR0C3LlttuUD/dX2UKGgGR0ByPyA8SwnqaAdN6ANoCEdAtzoIfRu0kXV9lChoBkdAch3la8pTdmgHTegDaAhHQLc6mnYg7o11fZQoaAZHQHHMJFgDzRRoB03oA2gIR0C3RkGuHN5ddX2UKGgGR0ByaKiDdxhlaAdN6ANoCEdAt0bTsu3+dnV9lChoBkdAckpuejEehmgHTegDaAhHQLdSa4m1IAh1fZQoaAZHQHJqmxMWXTpoB03oA2gIR0C3Uv66BiCrdX2UKGgGR0By1+dy1eByaAdN6ANoCEdAt16WAI6bOXV9lChoBkdAcqoUPhAGCGgHTegDaAhHQLdfJ/lQuVZ1fZQoaAZHQHIdB3/xUedoB03oA2gIR0C3as6uKXOXdX2UKGgGR0ByZJWEK3NLaAdN6ANoCEdAt2tiClJpWXVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 9780,
73
+ "observation_space": {
74
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
75
+ ":serialized:": "gAWVLQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCgAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYKAAAAAAAAAAAAAAAAAAAAAACUaBRLCoWUaBh0lFKUjAZfc2hhcGWUSwqFlIwDbG93lGgQKJZQAAAAAAAAAAAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwqFlGgYdJRSlIwEaGlnaJRoECiWUAAAAAAAAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoCksKhZRoGHSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==",
76
+ "dtype": "float64",
77
+ "bounded_below": "[False False False False False False False False False False]",
78
+ "bounded_above": "[False False False False False False False False False False]",
79
+ "_shape": [
80
+ 10
81
+ ],
82
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
83
+ "high": "[inf inf inf inf inf inf inf inf inf inf]",
84
+ "low_repr": "-inf",
85
+ "high_repr": "inf",
86
+ "_np_random": null
87
+ },
88
+ "action_space": {
89
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
90
+ ":serialized:": "gAWVUAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWAgAAAAAAAAABAZRoFEsChZRoGHSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBAolggAAAAAAAAAAACAvwAAgL+UaApLAoWUaBh0lFKUjARoaWdolGgQKJYIAAAAAAAAAAAAgD8AAIA/lGgKSwKFlGgYdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaDGMFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaDyKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
91
+ "dtype": "float32",
92
+ "bounded_below": "[ True True]",
93
+ "bounded_above": "[ True True]",
94
+ "_shape": [
95
+ 2
96
+ ],
97
+ "low": "[-1. -1.]",
98
+ "high": "[1. 1.]",
99
+ "low_repr": "-1.0",
100
+ "high_repr": "1.0",
101
+ "_np_random": "Generator(PCG64)"
102
+ },
103
+ "n_envs": 1,
104
+ "n_steps": 2048,
105
+ "gamma": 0.999,
106
+ "gae_lambda": 0.95,
107
+ "ent_coef": 5.167107294612664e-08,
108
+ "vf_coef": 0.6162112311062333,
109
+ "max_grad_norm": 2,
110
+ "batch_size": 8,
111
+ "n_epochs": 20,
112
+ "clip_range": {
113
+ ":type:": "<class 'function'>",
114
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
115
+ },
116
+ "clip_range_vf": null,
117
+ "normalize_advantage": true,
118
+ "target_kl": null,
119
+ "lr_schedule": {
120
+ ":type:": "<class 'function'>",
121
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPx/V8usTiESFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
122
+ }
123
+ }
ppo-seals-Swimmer-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:166139380d9b1078d43f492d54bcb0fe235a03300ed27bb96acc2bdf1d2aeb49
3
+ size 89328
ppo-seals-Swimmer-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:426ab112af5b407faf104fee510ce19d0f65932bd5eb16ecd825b59f8c95d710
3
+ size 45685
ppo-seals-Swimmer-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-seals-Swimmer-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.21.0
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 292.8398477, "std_reward": 3.6935229168772485, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-15T13:51:08.196384"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:086cf157caa8b7e74aec16cb2452b8a214ce4b4185fb0f10214b9192baac62e4
3
+ size 29934
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c86c31aaa11dcd29aa5125c45a31678d80aad61580c65d7e280b64b74c6196b6
3
+ size 1720