metadata
library_name: stable-baselines3
tags:
- seals/Swimmer-v1
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: seals/Swimmer-v1
type: seals/Swimmer-v1
metrics:
- type: mean_reward
value: 292.84 +/- 3.69
name: mean_reward
verified: false
PPO Agent playing seals/Swimmer-v1
This is a trained model of a PPO agent playing seals/Swimmer-v1 using the stable-baselines3 library and the RL Zoo.
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
pip install rl_zoo3
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo ppo --env seals/Swimmer-v1 -orga ernestum -f logs/
python -m rl_zoo3.enjoy --algo ppo --env seals/Swimmer-v1 -f logs/
If you installed the RL Zoo3 via pip (pip install rl_zoo3
), from anywhere you can do:
python -m rl_zoo3.load_from_hub --algo ppo --env seals/Swimmer-v1 -orga ernestum -f logs/
python -m rl_zoo3.enjoy --algo ppo --env seals/Swimmer-v1 -f logs/
Training (with the RL Zoo)
python -m rl_zoo3.train --algo ppo --env seals/Swimmer-v1 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo ppo --env seals/Swimmer-v1 -f logs/ -orga ernestum
Hyperparameters
OrderedDict([('batch_size', 8),
('clip_range', 0.1),
('ent_coef', 5.167107294612664e-08),
('gae_lambda', 0.95),
('gamma', 0.999),
('learning_rate', 0.0001214437022727675),
('max_grad_norm', 2),
('n_epochs', 20),
('n_steps', 2048),
('n_timesteps', 1000000.0),
('normalize',
{'gamma': 0.999, 'norm_obs': False, 'norm_reward': True}),
('policy', 'MlpPolicy'),
('policy_kwargs',
{'activation_fn': <class 'torch.nn.modules.activation.Tanh'>,
'features_extractor_class': <class 'imitation.policies.base.NormalizeFeaturesExtractor'>,
'net_arch': [{'pi': [64, 64], 'vf': [64, 64]}]}),
('vf_coef', 0.6162112311062333),
('normalize_kwargs',
{'norm_obs': {'gamma': 0.999,
'norm_obs': False,
'norm_reward': True},
'norm_reward': False})])
Environment Arguments
{'render_mode': 'rgb_array'}