--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer datasets: - __main__ metrics: - precision - recall - f1 - accuracy model-index: - name: ner_model results: - task: name: Token Classification type: token-classification dataset: name: __main__ type: __main__ config: local split: test args: local metrics: - name: Precision type: precision value: 0.5783305117853887 - name: Recall type: recall value: 0.6134825252106645 - name: F1 type: f1 value: 0.5953881217321357 - name: Accuracy type: accuracy value: 0.7670984455958549 --- # ner_model This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the __main__ dataset. It achieves the following results on the evaluation set: - Loss: 1.5136 - Precision: 0.5783 - Recall: 0.6135 - F1: 0.5954 - Accuracy: 0.7671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7447 | 1.0 | 5905 | 0.7678 | 0.4966 | 0.5209 | 0.5085 | 0.7409 | | 0.6153 | 2.0 | 11810 | 0.7378 | 0.5628 | 0.5600 | 0.5614 | 0.7624 | | 0.4623 | 3.0 | 17715 | 0.7959 | 0.5449 | 0.5836 | 0.5636 | 0.7573 | | 0.3629 | 4.0 | 23620 | 0.8921 | 0.5679 | 0.6017 | 0.5843 | 0.7631 | | 0.246 | 5.0 | 29525 | 1.0286 | 0.5878 | 0.5955 | 0.5916 | 0.7685 | | 0.1923 | 6.0 | 35430 | 1.2142 | 0.5926 | 0.5957 | 0.5941 | 0.7689 | | 0.1477 | 7.0 | 41335 | 1.3019 | 0.5681 | 0.6091 | 0.5879 | 0.7591 | | 0.1214 | 8.0 | 47240 | 1.4101 | 0.5834 | 0.6110 | 0.5969 | 0.7659 | | 0.0793 | 9.0 | 53145 | 1.4745 | 0.5848 | 0.6136 | 0.5989 | 0.7688 | | 0.0733 | 10.0 | 59050 | 1.5136 | 0.5783 | 0.6135 | 0.5954 | 0.7671 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.15.0