---
datasets:
- erfanzar/UltraChat-Mixin
language:
- en
- fr
- es
metrics:
- accuracy
pipeline_tag: text-generation
tags:
- code
---
# LinguaMatic
LinguaMatic is an advanced AI model designed to handle a wide range of Natural Language Processing (NLP) tasks. With its powerful capabilities, LinguaMatic can assist with tasks such as text classification, sentiment analysis, language translation, question answering, and much more.
## EasyDel
The model is finetuned Using a custom version of UltraChat on TPU-v4 POD using [EasyDel](https://github.com/erfanzar/EasyDeL)
## Prompting Method
LinguaMatic utilizes the llama2 prompting method to generate responses. This method, named after the friendly and intelligent llama, enhances the model's ability to engage in meaningful conversations. The `prompt_model` function provided below demonstrates how the llama2 prompting method is implemented:
```python
def prompt_model(message: str, chat_history,
system_prompt: str) -> str:
do_strip = False
texts = [f'[INST] <>\n{system_prompt}\n<>\n\n']
for user_input, response in chat_history:
user_input = user_input.strip() if do_strip else user_input
do_strip = True
texts.append(f'{user_input} [/INST] {response.strip()} [INST] ')
message = message.strip() if do_strip else message
texts.append(f'{message} [/INST]')
return ''.join(texts)
```
The `prompt_model` function takes a `message` as input, along with the `chat_history` and `system_prompt`. It generates a formatted text that includes the system prompt, user inputs, and the current message. This approach allows LinguaMatic to maintain context and provide more coherent and context-aware responses.
## Contributing
We welcome contributions to enhance LinguaMatic's capabilities and improve its performance. If you encounter any issues or have suggestions for improvement, please feel free to submit a pull request or open an issue on [EasyDel](https://github.com/erfanzar/EasyDeL) GitHub repository.