--- tags: - merge - mergekit - lazymergekit - mlabonne/Monarch-7B - paulml/OGNO-7B - bardsai/jaskier-7b-dpo-v5.6 base_model: - mlabonne/Monarch-7B - paulml/OGNO-7B - bardsai/jaskier-7b-dpo-v5.6 license: cc-by-nc-4.0 language: - en library_name: diffusers --- # ogno-monarch-jaskier-merge-7b ogno-monarch-jaskier-merge-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B) * [paulml/OGNO-7B](https://huggingface.co/paulml/OGNO-7B) * [bardsai/jaskier-7b-dpo-v5.6](https://huggingface.co/bardsai/jaskier-7b-dpo-v5.6) ## 🧩 Configuration ```yaml models: - model: eren23/dpo-binarized-NeutrixOmnibe-7B # No parameters necessary for base model - model: mlabonne/Monarch-7B #Emphasize the beginning of Vicuna format models parameters: weight: 0.6 density: 0.59 - model: paulml/OGNO-7B parameters: weight: 0.1 density: 0.55 # Vicuna format - model: bardsai/jaskier-7b-dpo-v5.6 parameters: weight: 0.3 density: 0.55 merge_method: dare_ties base_model: eren23/dpo-binarized-NeutrixOmnibe-7B parameters: int8_mask: true dtype: bfloat16 random_seed: 0 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "eren23/ogno-monarch-jaskier-merge-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```