--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Swedish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: 'hi' split: 'test' args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 19.647226479524615 --- # Whisper Small Hi - Swedish This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3953 - Wer: 19.6472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1331 | 1.29 | 1000 | 0.3014 | 22.3602 | | 0.0537 | 2.59 | 2000 | 0.2988 | 20.8572 | | 0.0217 | 3.88 | 3000 | 0.3093 | 20.5641 | | 0.004 | 5.17 | 4000 | 0.3551 | 20.0479 | | 0.0015 | 6.47 | 5000 | 0.3701 | 20.0022 | | 0.0015 | 7.76 | 6000 | 0.3769 | 19.7386 | | 0.0007 | 9.06 | 7000 | 0.3908 | 19.7010 | | 0.0006 | 10.35 | 8000 | 0.3953 | 19.6472 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 2.7.1 - Tokenizers 0.13.2