{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc2e0545690>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677617519068206628, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFaKgj8zFG8/zcmIPrRVNkAmPUm/kAcbPo8G877AGbi+K0ZOPqMi2z6JuqI+55RKPzifLb8c8zHASZMwvOnmoD62tmE+YoYvwLRSG78WmvI/NYxDv0JhFb0NsYA+S+sXwGQkFT9nZgM/LiWRPnls5b96eTM/YNsyvyR6rj4GbRBAPnwbQJZbIL9A2V2/uxV4vzVzED8vid6/33kxv6MGij+zPC4/puOmvmYQTT9Ynpy/P4TNP+5Tnb/kt0G/3dIGPEKSTb8xp189m327P/DZ5r+4tdu/Z2YDP5LCYcDS0w4/NwpEP4DYOb/h5KI+1ismQHMmTb97lIO/jgkPv+8fzL+0MEU/CjmCvrDDkT5kNsm/Om6Uv4xFE0DKvxM/nGcowMTFML/gx0E/rMtIP/KwVL//SnW+NfdPQO0qKr0kTytAuLXbvz1g+b8uJZE+eWzlv55agD86hoM+b9IgP+MXx76gADA/xnA9Ps1sFr+2ILe/tedHP0/lij5JPus+GMI2v/aoxr+yqhu9BREhPlyGxr6tfI0/fBFpvpRcr77qtgo/o/83PvIqJsCsZe4/g8jFvmQkFT9nZgM/LiWRPnls5b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD8see1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAddZ+PQAAAAD9Y/K/AAAAAN73Cj4AAAAAoWb5PwAAAABv4XS8AAAAAJA02z8AAAAAgeEGPgAAAAAlR9m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkf7ptQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIhrGz0AAAAAlyXfvwAAAACrxby8AAAAANIz3z8AAAAAiKLZvQAAAADIXuw/AAAAAPjqxr0AAAAAsTrmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhKkbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICNdPw9AAAAAHfq7r8AAAAAjf0EPQAAAAD9L/U/AAAAAPW75T0AAAAA5PHuPwAAAACPwYc9AAAAAFmIAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUSV41AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABo4dPQAAAABKkfG/AAAAAJolKTwAAAAAHTnZPwAAAADhAIS8AAAAACze4j8AAAAAO7ukvQAAAACqm/S/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ0t9ObiIcmMAWyUTegDjAF0lEdAnqsOcYqG13V9lChoBkdAoCQ9qFh5PmgHTegDaAhHQJ69EYLsrup1fZQoaAZHQJ7bIUWVNYdoB03oA2gIR0CevhpmEoOQdX2UKGgGR0CfnzwosqaxaAdN6ANoCEdAnsC7XQMQVnV9lChoBkdAnyjSMDOkcmgHTegDaAhHQJ7PPzBhx5t1fZQoaAZHQJ7/tZFG5MFoB03oA2gIR0Ce20kNnXd1dX2UKGgGR0Ce2bNxEORUaAdN6ANoCEdAntvskdFOPHV9lChoBkdAnSO6zJIUamgHTegDaAhHQJ7eDRWtEG91fZQoaAZHQJ329SAH3URoB03oA2gIR0Ce7r+rlvIfdX2UKGgGR0CcB/9F4LThaAdN6ANoCEdAnv/ucx0uDnV9lChoBkdAnUtIBeXzDmgHTegDaAhHQJ8Amkep4r11fZQoaAZHQJiNjPJJXhhoB03oA2gIR0CfArxd6cAjdX2UKGgGR0CWeiV1Oj7AaAdN6ANoCEdAnxF6RyOrAHV9lChoBkdAjKcd30PH1mgHTegDaAhHQJ8d3ZOBUaR1fZQoaAZHQJn2ReHBUJhoB03oA2gIR0CfHo1oQFs6dX2UKGgGR0CaTJBXCCSSaAdN6ANoCEdAnyC5h8Yyf3V9lChoBkdAgifHDziCKGgHTegDaAhHQJ80P4ZdfLN1fZQoaAZHQJuK1LwnYxtoB03oA2gIR0CfQteb/ffodX2UKGgGR0CYLfpX6qKhaAdN6ANoCEdAn0N6VY6nznV9lChoBkdAmxmDGDL8rWgHTegDaAhHQJ9Fj05EMLF1fZQoaAZHQJxaWNFSbYtoB03oA2gIR0CfU/IIWxhVdX2UKGgGR0CU01No8IRiaAdN6ANoCEdAn2ATJMg2ZXV9lChoBkdAnDBJ9iMHbGgHTegDaAhHQJ9gw5U96kZ1fZQoaAZHQJzo7bxmTTxoB03oA2gIR0CfYtwcHWz4dX2UKGgGR0CdK5k5ZKWcaAdN6ANoCEdAn3hwSWZ7X3V9lChoBkdAnvVkidJ8OWgHTegDaAhHQJ+FIL7XQMR1fZQoaAZHQJ5Ls77sOXpoB03oA2gIR0CfhdKyv9tNdX2UKGgGR0CgADA3T/hmaAdN6ANoCEdAn4fqjJuEVXV9lChoBkdAmcfUFwDNhWgHTegDaAhHQJ+Wz3rUsnR1fZQoaAZHQJueE02tMf1oB03oA2gIR0Cfoz/NJOFhdX2UKGgGR0CcbRQIldC3aAdN6ANoCEdAn6Q37tReknV9lChoBkdAnhOW8/UvwmgHTegDaAhHQJ+nXA2ycCp1fZQoaAZHQJw/naYeDFtoB03oA2gIR0Cfu6a1kUbldX2UKGgGR0Cah+zXBguzaAdN6ANoCEdAn8dvMbFS9HV9lChoBkdAnhyiJbdJrmgHTegDaAhHQJ/IGjua4MF1fZQoaAZHQJ7jbGVAzHloB03oA2gIR0CfyivoNd7fdX2UKGgGR0CdTUoG6f8NaAdN6ANoCEdAn9iED2alUXV9lChoBkdAnnIb3j+72GgHTegDaAhHQJ/mJL26ClJ1fZQoaAZHQJ7AcygwoLJoB03oA2gIR0Cf5x+yZ8a5dX2UKGgGR0CdJ+A5q/M4aAdN6ANoCEdAn+pF32VVxXV9lChoBkdAngD8tK7I1mgHTegDaAhHQJ/+/dxhlUZ1fZQoaAZHQJ//DEyckMVoB03oA2gIR0CgB4fjCHh1dX2UKGgGR0CeOu0/4ZdfaAdN6ANoCEdAoAfazPa+OHV9lChoBkdAn6wlUADJVGgHTegDaAhHQKAI61XNke91fZQoaAZHQJ/YR4RmK65oB03oA2gIR0CgELKfOD8MdX2UKGgGR0Cfzc36AOJ+aAdN6ANoCEdAoBnSS/0ulHV9lChoBkdAnb1PHLida2gHTegDaAhHQKAaQvXbudB1fZQoaAZHQJuzUhQm/nJoB03oA2gIR0CgG15VGTcJdX2UKGgGR0CfAGiNbTttaAdN6ANoCEdAoCKTN4Z/C3V9lChoBkdAnIL6DPGACmgHTegDaAhHQKAod0NBnjB1fZQoaAZHQJ8BNArxy4poB03oA2gIR0CgKMskyDZldX2UKGgGR0CcTWMV1wHaaAdN6ANoCEdAoCnXqu8sc3V9lChoBkdAn/kFMVUMomgHTegDaAhHQKAyaAkLQX11fZQoaAZHQKBwX+y7f51oB03oA2gIR0CgOrPZh8YydX2UKGgGR0CgBp8B2fTTaAdN6ANoCEdAoDsH9pAUtnV9lChoBkdAoBsRDw6QvGgHTegDaAhHQKA8HliBoVV1fZQoaAZHQJwbHpB5X2doB03oA2gIR0CgQz7jkuHvdX2UKGgGR0CdMX/y5I6KaAdN6ANoCEdAoEkb3bmEG3V9lChoBkdAoDx6CtihFmgHTegDaAhHQKBJczSCvox1fZQoaAZHQJ+EG/GlyipoB03oA2gIR0CgSnuxB3RpdX2UKGgGR0CfxAI7/4qPaAdN6ANoCEdAoFPMan7523V9lChoBkdAnwHbMgU1ymgHTegDaAhHQKBbi06YE4h1fZQoaAZHQJmuugte2NNoB03oA2gIR0CgW91XvH94dX2UKGgGR0CeTaQyhzvJaAdN6ANoCEdAoFzs+9rXUnV9lChoBkdAnDxDQ7cO9WgHTegDaAhHQKBkIVsUIs11fZQoaAZHQKAJ2lchTwVoB03oA2gIR0CgagCjDbaidX2UKGgGR0Cd5nfVqesgaAdN6ANoCEdAoGpV0vGp/HV9lChoBkdAnllrZvkzXWgHTegDaAhHQKBrYGTs6aN1fZQoaAZHQJ72Fu+AVfxoB03oA2gIR0CgdZY3m3fAdX2UKGgGR0Cev5KhcqvvaAdN6ANoCEdAoHvdI065oXV9lChoBkdAn1OMZxaPjmgHTegDaAhHQKB8MBfa6Bl1fZQoaAZHQJ6hQMXrMTxoB03oA2gIR0CgfUTEzfrKdX2UKGgGR0CfPKlF+d9VaAdN6ANoCEdAoIRahvitJXV9lChoBkdAoDot5MURF2gHTegDaAhHQKCKJLzwtrd1fZQoaAZHQJqOj91loUVoB03oA2gIR0CginlmOEM9dX2UKGgGR0CceyPxQSBcaAdN6ANoCEdAoIvusV+I/XV9lChoBkdAnhgBwZOzp2gHTegDaAhHQKCWRxBmf5F1fZQoaAZHQJuTYlme18doB03oA2gIR0CgnCixNZeSdX2UKGgGR0CefF8uzyBkaAdN6ANoCEdAoJx+WMS9NHV9lChoBkdAnz1fio86m2gHTegDaAhHQKCdkRpUPxx1fZQoaAZHQJ7rF7HAAQxoB03oA2gIR0CgpJp7b+LndX2UKGgGR0CgSYIq0+khaAdN6ANoCEdAoKrHSYw7DHV9lChoBkdAnatrofSx7mgHTegDaAhHQKCrP+CK77N1fZQoaAZHQJ/7k/s3Q2NoB03oA2gIR0CgrL4NZvDQdX2UKGgGR0Cf5tTcqOLjaAdN6ANoCEdAoLaAUSIxg3V9lChoBkdAm2i4PsiSq2gHTegDaAhHQKC8Uv6CUX51fZQoaAZHQJ8QXViF0xNoB03oA2gIR0CgvKQOnVG1dX2UKGgGR0CeY8GFi8WcaAdN6ANoCEdAoL2l4mkWRHV9lChoBkdAm8L+fqX4TWgHTegDaAhHQKDElWuHN5d1fZQoaAZHQJw+IpG4I8hoB03oA2gIR0Cgy3sAFPi2dX2UKGgGR0Cdfxsdkrf+aAdN6ANoCEdAoMv3MW43FXV9lChoBkdAnZ9PJvHcUWgHTegDaAhHQKDNh+rlvIh1fZQoaAZHQJTQErupjtpoB03oA2gIR0Cg1o7LlmvodX2UKGgGR0Cfopwco6S1aAdN6ANoCEdAoN1rdFfAsXV9lChoBkdAn15DBEa2nmgHTegDaAhHQKDd3m8M/hV1fZQoaAZHQJXBcIrvsqtoB03oA2gIR0Cg32wvQF9sdX2UKGgGR0CZSo7jkuHvaAdN6ANoCEdAoOlAGIKtxXV9lChoBkdAnzfZZB9kSWgHTegDaAhHQKDyOnAqNId1fZQoaAZHQKBuZpUxVQ1oB03oA2gIR0Cg8oo0qH45dX2UKGgGR0CdJex8D0UXaAdN6ANoCEdAoPOlev6j33VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.98, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}