--- language: - mn base_model: bayartsogt/mongolian-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-ner-demo results: [] --- # roberta-base-ner-demo This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1320 - Precision: 0.9254 - Recall: 0.9350 - F1: 0.9302 - Accuracy: 0.9800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1711 | 1.0 | 477 | 0.0834 | 0.8308 | 0.8820 | 0.8556 | 0.9697 | | 0.0642 | 2.0 | 954 | 0.0817 | 0.8323 | 0.8888 | 0.8596 | 0.9720 | | 0.0401 | 3.0 | 1431 | 0.0935 | 0.8404 | 0.8930 | 0.8659 | 0.9720 | | 0.0272 | 4.0 | 1908 | 0.1043 | 0.8506 | 0.8959 | 0.8727 | 0.9721 | | 0.0148 | 5.0 | 2385 | 0.1051 | 0.9195 | 0.9309 | 0.9252 | 0.9793 | | 0.007 | 6.0 | 2862 | 0.1181 | 0.9190 | 0.9298 | 0.9243 | 0.9789 | | 0.0054 | 7.0 | 3339 | 0.1185 | 0.9250 | 0.9337 | 0.9293 | 0.9796 | | 0.0027 | 8.0 | 3816 | 0.1252 | 0.9239 | 0.9342 | 0.9290 | 0.9801 | | 0.0018 | 9.0 | 4293 | 0.1298 | 0.9247 | 0.9335 | 0.9291 | 0.9799 | | 0.0015 | 10.0 | 4770 | 0.1320 | 0.9254 | 0.9350 | 0.9302 | 0.9800 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1