from src.utils.typing_utils import * import numpy as np import torch import torch.nn as nn import scipy.ndimage from skimage import measure from einops import repeat import torch.nn.functional as F def generate_dense_grid_points( bbox_min: np.ndarray, bbox_max: np.ndarray, octree_depth: int, indexing: str = "ij" ): length = bbox_max - bbox_min num_cells = np.exp2(octree_depth) x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32) y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32) z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32) [xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing) xyz = np.stack((xs, ys, zs), axis=-1) xyz = xyz.reshape(-1, 3) grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1] return xyz, grid_size, length def generate_dense_grid_points_gpu( bbox_min: torch.Tensor, bbox_max: torch.Tensor, octree_depth: int, indexing: str = "ij", dtype: torch.dtype = torch.float16 ): length = bbox_max - bbox_min num_cells = 2 ** octree_depth device = bbox_min.device x = torch.linspace(bbox_min[0], bbox_max[0], int(num_cells), dtype=dtype, device=device) y = torch.linspace(bbox_min[1], bbox_max[1], int(num_cells), dtype=dtype, device=device) z = torch.linspace(bbox_min[2], bbox_max[2], int(num_cells), dtype=dtype, device=device) xs, ys, zs = torch.meshgrid(x, y, z, indexing=indexing) xyz = torch.stack((xs, ys, zs), dim=-1) xyz = xyz.view(-1, 3) grid_size = [int(num_cells), int(num_cells), int(num_cells)] return xyz, grid_size, length def find_mesh_grid_coordinates_fast_gpu( occupancy_grid, n_limits=-1 ): core_grid = occupancy_grid[1:-1, 1:-1, 1:-1] occupied = core_grid > 0 neighbors_unoccupied = ( (occupancy_grid[:-2, :-2, :-2] < 0) | (occupancy_grid[:-2, :-2, 1:-1] < 0) | (occupancy_grid[:-2, :-2, 2:] < 0) # x-1, y-1, z-1/0/1 | (occupancy_grid[:-2, 1:-1, :-2] < 0) | (occupancy_grid[:-2, 1:-1, 1:-1] < 0) | (occupancy_grid[:-2, 1:-1, 2:] < 0) # x-1, y0, z-1/0/1 | (occupancy_grid[:-2, 2:, :-2] < 0) | (occupancy_grid[:-2, 2:, 1:-1] < 0) | (occupancy_grid[:-2, 2:, 2:] < 0) # x-1, y+1, z-1/0/1 | (occupancy_grid[1:-1, :-2, :-2] < 0) | (occupancy_grid[1:-1, :-2, 1:-1] < 0) | (occupancy_grid[1:-1, :-2, 2:] < 0) # x0, y-1, z-1/0/1 | (occupancy_grid[1:-1, 1:-1, :-2] < 0) | (occupancy_grid[1:-1, 1:-1, 2:] < 0) # x0, y0, z-1/1 | (occupancy_grid[1:-1, 2:, :-2] < 0) | (occupancy_grid[1:-1, 2:, 1:-1] < 0) | (occupancy_grid[1:-1, 2:, 2:] < 0) # x0, y+1, z-1/0/1 | (occupancy_grid[2:, :-2, :-2] < 0) | (occupancy_grid[2:, :-2, 1:-1] < 0) | (occupancy_grid[2:, :-2, 2:] < 0) # x+1, y-1, z-1/0/1 | (occupancy_grid[2:, 1:-1, :-2] < 0) | (occupancy_grid[2:, 1:-1, 1:-1] < 0) | (occupancy_grid[2:, 1:-1, 2:] < 0) # x+1, y0, z-1/0/1 | (occupancy_grid[2:, 2:, :-2] < 0) | (occupancy_grid[2:, 2:, 1:-1] < 0) | (occupancy_grid[2:, 2:, 2:] < 0) # x+1, y+1, z-1/0/1 ) core_mesh_coords = torch.nonzero(occupied & neighbors_unoccupied, as_tuple=False) + 1 if n_limits != -1 and core_mesh_coords.shape[0] > n_limits: print(f"core mesh coords {core_mesh_coords.shape[0]} is too large, limited to {n_limits}") ind = np.random.choice(core_mesh_coords.shape[0], n_limits, True) core_mesh_coords = core_mesh_coords[ind] return core_mesh_coords def find_candidates_band( occupancy_grid: torch.Tensor, band_threshold: float, n_limits: int = -1 ) -> torch.Tensor: """ Returns the coordinates of all voxels in the occupancy_grid where |value| < band_threshold. Args: occupancy_grid (torch.Tensor): A 3D tensor of SDF values. band_threshold (float): The threshold below which |SDF| must be to include the voxel. n_limits (int): Maximum number of points to return (-1 for no limit) Returns: torch.Tensor: A 2D tensor of coordinates (N x 3) where each row is [x, y, z]. """ core_grid = occupancy_grid[1:-1, 1:-1, 1:-1] # logits to sdf core_grid = torch.sigmoid(core_grid) * 2 - 1 # Create a boolean mask for all cells in the band in_band = torch.abs(core_grid) < band_threshold # Get coordinates of all voxels in the band core_mesh_coords = torch.nonzero(in_band, as_tuple=False) + 1 if n_limits != -1 and core_mesh_coords.shape[0] > n_limits: print(f"core mesh coords {core_mesh_coords.shape[0]} is too large, limited to {n_limits}") ind = np.random.choice(core_mesh_coords.shape[0], n_limits, True) core_mesh_coords = core_mesh_coords[ind] return core_mesh_coords def expand_edge_region_fast(edge_coords, grid_size, dtype): expanded_tensor = torch.zeros(grid_size, grid_size, grid_size, device='cuda', dtype=dtype, requires_grad=False) expanded_tensor[edge_coords[:, 0], edge_coords[:, 1], edge_coords[:, 2]] = 1 if grid_size < 512: kernel_size = 5 pooled_tensor = torch.nn.functional.max_pool3d(expanded_tensor.unsqueeze(0).unsqueeze(0), kernel_size=kernel_size, stride=1, padding=2).squeeze() else: kernel_size = 3 pooled_tensor = torch.nn.functional.max_pool3d(expanded_tensor.unsqueeze(0).unsqueeze(0), kernel_size=kernel_size, stride=1, padding=1).squeeze() expanded_coords_low_res = torch.nonzero(pooled_tensor, as_tuple=False).to(torch.int16) expanded_coords_high_res = torch.stack([ torch.cat((expanded_coords_low_res[:, 0] * 2, expanded_coords_low_res[:, 0] * 2, expanded_coords_low_res[:, 0] * 2, expanded_coords_low_res[:, 0] * 2, expanded_coords_low_res[:, 0] * 2 + 1, expanded_coords_low_res[:, 0] * 2 + 1, expanded_coords_low_res[:, 0] * 2 + 1, expanded_coords_low_res[:, 0] * 2 + 1)), torch.cat((expanded_coords_low_res[:, 1] * 2, expanded_coords_low_res[:, 1] * 2, expanded_coords_low_res[:, 1] * 2+1, expanded_coords_low_res[:, 1] * 2 + 1, expanded_coords_low_res[:, 1] * 2, expanded_coords_low_res[:, 1] * 2, expanded_coords_low_res[:, 1] * 2 + 1, expanded_coords_low_res[:, 1] * 2 + 1)), torch.cat((expanded_coords_low_res[:, 2] * 2, expanded_coords_low_res[:, 2] * 2+1, expanded_coords_low_res[:, 2] * 2, expanded_coords_low_res[:, 2] * 2 + 1, expanded_coords_low_res[:, 2] * 2, expanded_coords_low_res[:, 2] * 2+1, expanded_coords_low_res[:, 2] * 2, expanded_coords_low_res[:, 2] * 2 + 1)) ], dim=1) return expanded_coords_high_res def zoom_block(block, scale_factor, order=3): block = block.astype(np.float32) return scipy.ndimage.zoom(block, scale_factor, order=order) def parallel_zoom(occupancy_grid, scale_factor): result = torch.nn.functional.interpolate(occupancy_grid.unsqueeze(0).unsqueeze(0), scale_factor=scale_factor) return result.squeeze(0).squeeze(0) @torch.no_grad() def hierarchical_extract_geometry( geometric_func: Callable, device: torch.device, dtype: torch.dtype, bounds: Union[Tuple[float], List[float], float] = (-1.25, -1.25, -1.25, 1.25, 1.25, 1.25), dense_octree_depth: int = 8, hierarchical_octree_depth: int = 9, max_num_expanded_coords: int = 1e8, verbose: bool = False, ): """ Args: geometric_func: device: bounds: dense_octree_depth: hierarchical_octree_depth: Returns: """ if isinstance(bounds, float): bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds] bbox_min = torch.tensor(bounds[0:3]).to(device) bbox_max = torch.tensor(bounds[3:6]).to(device) bbox_size = bbox_max - bbox_min xyz_samples, grid_size, length = generate_dense_grid_points_gpu( bbox_min=bbox_min, bbox_max=bbox_max, octree_depth=dense_octree_depth, indexing="ij", dtype=dtype ) if verbose: print(f'step 1 query num: {xyz_samples.shape[0]}') grid_logits = geometric_func(xyz_samples.unsqueeze(0)).to(dtype).view(grid_size[0], grid_size[1], grid_size[2]) # print(f'step 1 grid_logits shape: {grid_logits.shape}') for i in range(hierarchical_octree_depth - dense_octree_depth): curr_octree_depth = dense_octree_depth + i + 1 # upsample grid_size = 2**curr_octree_depth normalize_offset = grid_size / 2 high_res_occupancy = parallel_zoom(grid_logits, 2).to(dtype) band_threshold = 1.0 edge_coords = find_candidates_band(grid_logits, band_threshold) expanded_coords = expand_edge_region_fast(edge_coords, grid_size=int(grid_size/2), dtype=dtype).to(dtype) if verbose: print(f'step {i+2} query num: {len(expanded_coords)}') if max_num_expanded_coords > 0 and len(expanded_coords) > max_num_expanded_coords: raise ValueError(f"expanded_coords is too large, {len(expanded_coords)} > {max_num_expanded_coords}") expanded_coords_norm = (expanded_coords - normalize_offset) * (abs(bounds[0]) / normalize_offset) all_logits = None all_logits = geometric_func(expanded_coords_norm.unsqueeze(0)).to(dtype) all_logits = torch.cat([expanded_coords_norm, all_logits[0]], dim=1) # print("all logits shape = ", all_logits.shape) indices = all_logits[..., :3] indices = indices * (normalize_offset / abs(bounds[0])) + normalize_offset indices = indices.type(torch.IntTensor) values = all_logits[:, 3] # breakpoint() high_res_occupancy[indices[:, 0], indices[:, 1], indices[:, 2]] = values grid_logits = high_res_occupancy # torch.cuda.empty_cache() if verbose: print("final grids shape = ", grid_logits.shape) vertices, faces, normals, _ = measure.marching_cubes(grid_logits.float().cpu().numpy(), 0, method="lewiner") vertices = vertices / (2**hierarchical_octree_depth) * bbox_size.cpu().numpy() + bbox_min.cpu().numpy() mesh_v_f = (vertices.astype(np.float32), np.ascontiguousarray(faces)) return mesh_v_f