--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_awesome_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1326 --- # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 4.5600 - Rouge1: 0.1326 - Rouge2: 0.0267 - Rougel: 0.1146 - Rougelsum: 0.1146 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 1 | 4.5905 | 0.1326 | 0.0267 | 0.1146 | 0.1146 | 19.0 | | No log | 2.0 | 2 | 4.5600 | 0.1326 | 0.0267 | 0.1146 | 0.1146 | 19.0 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.1 - Datasets 2.15.0 - Tokenizers 0.15.0