{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f200198ae80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714651391752491099, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADUjT2kbxG9gmgVOiruMbwjhB+9k5F/PAAAgD8AAIA/ZoFXPqPwlz+C5ag+JjCcvrc1gj5m+BK9AAAAAAAAAADaPYS95QiAP/aj0DsM1ZC+g1wMvR/ChjwAAAAAAAAAAHOQoL2P0gS6pomlOi/hbjVDD/i6qZfAuQAAgD8AAIA/81FPPnU3KT+IxGK9983yvc8pBj2CYkk9AAAAAAAAAACS6ZG+OToLP/iyPT7KwIm+O9KDvbUxcL0AAAAAAAAAAOawiT35CEY/g79NvZCRQb5Ywd4760pHvQAAAAAAAAAAAGBzPBT4jboCrDO5HlcjtPbiAzpoqFA4AACAPwAAgD/NTYS8FG2HP2WTgbyzJ46+c9l/vTpYqDwAAAAAAAAAAGZWGzxIM5m6+3jkOl7lijXuTMO6NAMEugAAgD8AAIA/Zp8UPcPngT5NDfc7KjIuvowdsbwqTZU9AAAAAAAAAABm3sy7e0SVuoKXY7kXVVy0qpb2OrWrgzgAAIA/AACAPwARj7yuh4y6/DXCOuYymzQMcge7rcreuQAAgD8AAIA/2pG0PeGMlLrao147s2jkNYQ97bk9V4C6AACAPwAAgD9moUG9qrS5PsI4sD0StWO+6MCfOeIqGT0AAAAAAAAAAGYe+Dz2DFS6aoAsN7pMqzJiHaQ5dbxHtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGMidTgl4TuMAWyUTegDjAF0lEdAnmiL5ZbILnV9lChoBkdAXeSpKjBVMmgHTegDaAhHQJ5qZRqGlAN1fZQoaAZHQGKthH9WIXVoB03oA2gIR0CebS/pdKNAdX2UKGgGR0BjnbD63y7PaAdN6ANoCEdAnnfkILPUrnV9lChoBkdAX9OY6XBxgmgHTegDaAhHQJ58FoZhrnF1fZQoaAZHQGN03FLnLaFoB03oA2gIR0CefNZJ04ipdX2UKGgGR0BjxTWqcVgyaAdN6ANoCEdAnn21vZRKpXV9lChoBkdAX2oNtqHoHWgHTegDaAhHQJ6BcnMMZxd1fZQoaAZHQGbveHBUJfJoB03oA2gIR0CehFfeDWbxdX2UKGgGR0BlK+cBltj1aAdN6ANoCEdAnpxd/jKgZnV9lChoBkdAYqXOP/7zkWgHTegDaAhHQJ6ilfICEHt1fZQoaAZHQDGWA3DNyHVoB007AWgIR0CepVWgOBlMdX2UKGgGR0Bj+z1mJ3xGaAdN6ANoCEdAnqyDHfdhzHV9lChoBkdAYlPcJMQEp2gHTegDaAhHQJ6sxaFEiMZ1fZQoaAZHQF7K0z0pVjtoB03oA2gIR0CetDH4oJAudX2UKGgGR0BfYIUzsQd0aAdN6ANoCEdAnrrrH+6y0XV9lChoBkdAZQP9tuUD+2gHTegDaAhHQJ67Q03wTdt1fZQoaAZHQGQoOaOPvKFoB03oA2gIR0Ceu3WGATZhdX2UKGgGR0BcHOxrzoU0aAdN6ANoCEdAnr1nEyckMXV9lChoBkdAYSYi5/b0v2gHTegDaAhHQJ7AY2eg+Ql1fZQoaAZHQGEoTVUdaMdoB03oA2gIR0CezpGorFwUdX2UKGgGR0BdcrRBu4wzaAdN6ANoCEdAntMVtj0+T3V9lChoBkdAYuNorWiDd2gHTegDaAhHQJ7T0x8D0UZ1fZQoaAZHQF8fK/EfkmxoB03oA2gIR0Ce2PZ7HAARdX2UKGgGR0BjkPXCj1wpaAdN6ANoCEdAntwQT7EYO3V9lChoBkdAYxrMpw0fo2gHTegDaAhHQJ7zDXDm8ul1fZQoaAZHQGIkHqeK8+RoB03oA2gIR0Ce+wXizcASdX2UKGgGR0Ber7GipNsWaAdN6ANoCEdAnv3BJ7LMcXV9lChoBkdAZJH/x2B8QmgHTegDaAhHQJ8ExcxCY1J1fZQoaAZHQGA20l7dBSloB03oA2gIR0CfBQrGR3eOdX2UKGgGR0BfhkEHMUypaAdN6ANoCEdAnwyU2YOUdXV9lChoBkdAWiA4JeE7GWgHTegDaAhHQJ8Tn4ubqhV1fZQoaAZHQGCHKsuFpPBoB03oA2gIR0CfE/sFMZgpdX2UKGgGR0Bj+kJa7mMgaAdN6ANoCEdAnxQtsFdLQHV9lChoBkdAZX4nAqNIb2gHTegDaAhHQJ8WB7eEZix1fZQoaAZHQEFURK6FueloB00XAWgIR0CfF4tU4rBkdX2UKGgGR0BbdBRuTA32aAdN6ANoCEdAnxkDn3cpLHV9lChoBkdAZgD2i+L3sWgHTegDaAhHQJ8kGflIVdp1fZQoaAZHQGD9jc/MW45oB03oA2gIR0CfKatSAH3UdX2UKGgGR0BjTqMUAT7EaAdN6ANoCEdAnyp3K4hEB3V9lChoBkdAYHN8Muvll2gHTegDaAhHQJ8vQDSw4bV1fZQoaAZHQFvTVN5+pfhoB03oA2gIR0CfMh7qIJqqdX2UKGgGR0ByCk2S+xnnaAdNAwJoCEdAnzT0KzAvc3V9lChoBkdAYbkJOWSlnGgHTegDaAhHQJ81oL0Bfa91fZQoaAZHQFxUcwg1WKdoB03oA2gIR0CfTdtknTiLdX2UKGgGR0BffI8Md92HaAdN6ANoCEdAn1BRplBhQXV9lChoBkdAYa+i22G7BmgHTegDaAhHQJ9YP2vjfel1fZQoaAZHQGw0JSzgMttoB03NA2gIR0CfXgeUY8+zdX2UKGgGR0Bklmthd+ocaAdN6ANoCEdAn2XdEsrd33V9lChoBkdAX0eRPoFFD2gHTegDaAhHQJ9mLJfYzzp1fZQoaAZHQGMcYBmwqy5oB03oA2gIR0CfaCrdWQwLdX2UKGgGR0BjD+yxA0KraAdN6ANoCEdAn2mgbhm5D3V9lChoBkdAZuIJhvze42gHTegDaAhHQJ9q/VNHpbF1fZQoaAZHQGRenoxHoX9oB03oA2gIR0CfdV6Ae7tidX2UKGgGR0Bi78d5prULaAdN6ANoCEdAn3j0HhS9/XV9lChoBkdAXj5R77bcoGgHTegDaAhHQJ95kDSw4bV1fZQoaAZHQGDQYkVvddpoB03oA2gIR0CffaYnfEXMdX2UKGgGR0Bg8ddRiw0PaAdN6ANoCEdAn4BaA8Swn3V9lChoBkdAY3z+QU5+6WgHTegDaAhHQJ+DebnX/YJ1fZQoaAZHQGDok5IYm9hoB03oA2gIR0CfhG/GVAzIdX2UKGgGR0Blm1bX6InCaAdN6ANoCEdAn53VPnB+F3V9lChoBkdAYbkCp3os7WgHTegDaAhHQJ+gG2Zy+6B1fZQoaAZHQHC03QD3dsVoB03EAmgIR0CfobRoAXEZdX2UKGgGR0Bj1kihWYF8aAdN6ANoCEdAn6YOsYEW7HV9lChoBkdAbkmY2sJY1mgHTfgCaAhHQJ+n9P+GXX11fZQoaAZHQGN6tqQA+6loB03oA2gIR0CfqrCqZML4dX2UKGgGR0BC/HIQvpQlaAdL/2gIR0Cfr6kpZwGXdX2UKGgGR0BI7+xnnMdMaAdNPQFoCEdAn7GI5ggHNXV9lChoBkdAZFsN0eU6gmgHTegDaAhHQJ+yJmcvugJ1fZQoaAZHQGbc+nhsImhoB03oA2gIR0CftFgCwKSgdX2UKGgGR0Blj8rVe8f3aAdN6ANoCEdAn7fRnanJk3V9lChoBkdAS2Ug2ZRbbGgHS/NoCEdAn79kxM36ynV9lChoBkdAYW0IrOJLumgHTegDaAhHQJ/DZ7gKnel1fZQoaAZHQGFpUjLSuyNoB03oA2gIR0Cfx3tU4rBkdX2UKGgGR0BgQAiTt9hJaAdN6ANoCEdAn8gkojOcD3V9lChoBkdAZHWWnCO3lWgHTegDaAhHQJ/MkLronrp1fZQoaAZHQELkqFRHf/FoB00LAWgIR0Cfz1kP+XJHdX2UKGgGR0Bn6JfnfVI7aAdN6ANoCEdAn894BV+7UXV9lChoBkdAZM1isGPgemgHTegDaAhHQJ/SGIGhVVB1fZQoaAZHQGOnW0Z3s5ZoB03oA2gIR0Cf0sKISDh+dX2UKGgGR0BNeTnJT2nLaAdL4mgIR0Cf1GXDm8ujdX2UKGgGR0BklvBSDRMOaAdN6ANoCEdAn+zmBJ7LMnV9lChoBkdAYoeaPS2H+WgHTegDaAhHQJ/2F9Wp6yB1fZQoaAZHQFuMnSv1UVBoB03oA2gIR0Cf+IPQfIS2dX2UKGgGR0BjvF7IDHOsaAdN6ANoCEdAn/wVvZRKpXV9lChoBkdAYVoc9W6shmgHTegDaAhHQKACKUeMhox1fZQoaAZHQGLdrMC9ytFoB03oA2gIR0CgAoEGZ/kOdX2UKGgGR0BKjHdfsu3+aAdL2mgIR0CgApLgGbCrdX2UKGgGR0Bfap8KG+K1aAdN6ANoCEdAoAOWapgkT3V9lChoBkdAYkgOjIq9XmgHTegDaAhHQKAFIo0ALiN1fZQoaAZHQGZFFMyrPt5oB03oA2gIR0CgCzz8P4EfdX2UKGgGR0Bt+9lwtJ4CaAdNlQNoCEdAoA5XyPMjeXV9lChoBkdAYeZk3CKrJmgHTegDaAhHQKAOi9oN/fB1fZQoaAZHQHAno4+8oQZoB00YAmgIR0CgEIMewLVndX2UKGgGR0BvPdsSCe3AaAdNvQFoCEdAoBHa1gH/tXV9lChoBkdAYYmwN9YwI2gHTegDaAhHQKASfwgkkbB1fZQoaAZHQGTltedCmdloB03oA2gIR0CgEo7MPjGUdX2UKGgGR0Bm3ShtcfNiaAdN6ANoCEdAoBPwEB8x9HV9lChoBkdAYp2iY9gWrWgHTegDaAhHQKAUSFvhqCZ1fZQoaAZHQF/LNj9XLeRoB03oA2gIR0CgFRERaouPdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 266, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}