--- base_model: microsoft/Phi-3.5-mini-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: guru1984-v2 results: [] pipeline_tag: text-generation --- # guru1984-v2 This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.2186 | 0.0393 | 50 | 3.8618 | | 3.1772 | 0.0786 | 100 | 2.5934 | | 2.401 | 0.1178 | 150 | 2.2560 | | 2.1397 | 0.1571 | 200 | 2.1369 | | 2.0834 | 0.1964 | 250 | 2.0805 | | 2.055 | 0.2357 | 300 | 2.0563 | | 2.043 | 0.2749 | 350 | 2.0286 | | 2.0135 | 0.3142 | 400 | 2.0177 | | 1.9971 | 0.3535 | 450 | 2.0020 | | 1.9766 | 0.3928 | 500 | 1.9914 | | 1.9677 | 0.4321 | 550 | 1.9789 | | 1.9562 | 0.4713 | 600 | 1.9680 | | 1.9594 | 0.5106 | 650 | 1.9631 | | 1.9423 | 0.5499 | 700 | 1.9546 | | 1.9587 | 0.5892 | 750 | 1.9470 | | 1.9408 | 0.6284 | 800 | 1.9397 | | 1.9816 | 0.6677 | 850 | 1.9425 | | 1.9298 | 0.7070 | 900 | 1.9177 | | 1.9021 | 0.7463 | 950 | 1.9150 | | 1.9104 | 0.7855 | 1000 | 1.9072 | | 1.9325 | 0.8248 | 1050 | 1.8993 | | 1.9183 | 0.8641 | 1100 | 1.9054 | | 1.9557 | 0.9034 | 1150 | 1.8948 | | 1.9261 | 0.9427 | 1200 | 1.8823 | | 1.9337 | 0.9819 | 1250 | 1.8785 | | 1.9034 | 1.0212 | 1300 | 1.8770 | | 1.8603 | 1.0605 | 1350 | 1.8668 | | 1.8477 | 1.0998 | 1400 | 1.8662 | | 1.8658 | 1.1390 | 1450 | 1.8574 | | 1.8923 | 1.1783 | 1500 | 1.8574 | | 1.8777 | 1.2176 | 1550 | 1.8603 | | 1.8645 | 1.2569 | 1600 | 1.8517 | | 1.8204 | 1.2962 | 1650 | 1.8447 | | 1.8661 | 1.3354 | 1700 | 1.8400 | | 1.8595 | 1.3747 | 1750 | 1.8384 | | 1.857 | 1.4140 | 1800 | 1.8314 | | 1.8431 | 1.4533 | 1850 | 1.8279 | | 1.8249 | 1.4925 | 1900 | 1.8285 | | 1.8372 | 1.5318 | 1950 | 1.8243 | | 1.8589 | 1.5711 | 2000 | 1.8210 | | 1.829 | 1.6104 | 2050 | 1.8053 | | 1.8154 | 1.6496 | 2100 | 1.8002 | | 1.8122 | 1.6889 | 2150 | 1.8008 | | 1.8297 | 1.7282 | 2200 | 1.7969 | | 1.8467 | 1.7675 | 2250 | 1.7963 | | 1.8242 | 1.8068 | 2300 | 1.7973 | | 1.8209 | 1.8460 | 2350 | 1.7902 | | 1.8193 | 1.8853 | 2400 | 1.7890 | | 1.8153 | 1.9246 | 2450 | 1.7839 | | 1.7845 | 1.9639 | 2500 | 1.7780 | | 1.7975 | 2.0031 | 2550 | 1.7794 | | 1.7922 | 2.0424 | 2600 | 1.7733 | | 1.7558 | 2.0817 | 2650 | 1.7721 | | 1.7821 | 2.1210 | 2700 | 1.7694 | | 1.7735 | 2.1603 | 2750 | 1.7644 | | 1.7802 | 2.1995 | 2800 | 1.7630 | | 1.7616 | 2.2388 | 2850 | 1.7603 | | 1.7751 | 2.2781 | 2900 | 1.7580 | | 1.7811 | 2.3174 | 2950 | 1.7550 | | 1.7356 | 2.3566 | 3000 | 1.7529 | | 1.7575 | 2.3959 | 3050 | 1.7514 | | 1.7547 | 2.4352 | 3100 | 1.7510 | | 1.7699 | 2.4745 | 3150 | 1.7522 | | 1.7506 | 2.5137 | 3200 | 1.7496 | | 1.7564 | 2.5530 | 3250 | 1.7441 | | 1.7517 | 2.5923 | 3300 | 1.7436 | | 1.7371 | 2.6316 | 3350 | 1.7433 | | 1.7425 | 2.6709 | 3400 | 1.7430 | | 1.7407 | 2.7101 | 3450 | 1.7402 | | 1.7513 | 2.7494 | 3500 | 1.7408 | | 1.7662 | 2.7887 | 3550 | 1.7384 | | 1.7557 | 2.8280 | 3600 | 1.7397 | | 1.7557 | 2.8672 | 3650 | 1.7405 | | 1.753 | 2.9065 | 3700 | 1.7404 | | 1.7788 | 2.9458 | 3750 | 1.7381 | | 1.7539 | 2.9851 | 3800 | 1.7375 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1