--- license: apache-2.0 base_model: microsoft/resnet-18 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet-18 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # resnet-18 This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7117 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.9091 | 5 | 1.0318 | 0.4156 | | 1.0893 | 2.0 | 11 | 0.9520 | 0.6364 | | 1.0893 | 2.9091 | 16 | 0.9017 | 0.8442 | | 0.9912 | 4.0 | 22 | 0.8444 | 1.0 | | 0.9912 | 4.9091 | 27 | 0.8027 | 1.0 | | 0.9248 | 6.0 | 33 | 0.7631 | 1.0 | | 0.9248 | 6.9091 | 38 | 0.7369 | 1.0 | | 0.8716 | 8.0 | 44 | 0.7156 | 1.0 | | 0.8716 | 8.9091 | 49 | 0.7137 | 1.0 | | 0.8517 | 9.0909 | 50 | 0.7117 | 1.0 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1