from huggingface_hub import notebook_login # This script assumes that the environment variables and other setup have been done # as specified in the terminal commands. # The training command from the notebook is converted into a Python command # using the 'subprocess' module (for instance). import subprocess # Training command for the second model subprocess.run(["accelerate", "launch", "--mixed_precision=fp16", "train_text_to_image_lora.py", "--pretrained_model_name_or_path=runwayml/stable-diffusion-v1-5", "--dataset_name=pcuenq/oxford-pets", "--dataloader_num_workers=8", "--resolution=512", "--center_crop", "--random_flip", "--train_batch_size=1", "--gradient_accumulation_steps=4", "--max_train_steps=15000", "--learning_rate=1e-04", "--max_grad_norm=1", "--lr_scheduler=cosine", "--lr_warmup_steps=0", "--output_dir=/content/gdrive/MyDrive/cs182/testing_pets/", "--push_to_hub", "--hub_model_id=pets", "--checkpointing_steps=500", "--validation_prompt=Totoro", "--seed=1337", "--caption_column=label"])