--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_6_binary_v1 results: [] --- # distilbert-base-uncased_fold_6_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7209 - F1: 0.8156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 290 | 0.4115 | 0.8048 | | 0.3976 | 2.0 | 580 | 0.3980 | 0.8156 | | 0.3976 | 3.0 | 870 | 0.5953 | 0.8142 | | 0.1965 | 4.0 | 1160 | 0.7940 | 0.8057 | | 0.1965 | 5.0 | 1450 | 0.8098 | 0.8069 | | 0.0847 | 6.0 | 1740 | 1.0293 | 0.7913 | | 0.03 | 7.0 | 2030 | 1.1649 | 0.8073 | | 0.03 | 8.0 | 2320 | 1.2876 | 0.7973 | | 0.0166 | 9.0 | 2610 | 1.3260 | 0.8038 | | 0.0166 | 10.0 | 2900 | 1.3523 | 0.8084 | | 0.0062 | 11.0 | 3190 | 1.3814 | 0.8097 | | 0.0062 | 12.0 | 3480 | 1.4134 | 0.8165 | | 0.0113 | 13.0 | 3770 | 1.5374 | 0.8068 | | 0.006 | 14.0 | 4060 | 1.5808 | 0.8100 | | 0.006 | 15.0 | 4350 | 1.6551 | 0.7972 | | 0.0088 | 16.0 | 4640 | 1.5793 | 0.8116 | | 0.0088 | 17.0 | 4930 | 1.6134 | 0.8143 | | 0.0021 | 18.0 | 5220 | 1.6204 | 0.8119 | | 0.0031 | 19.0 | 5510 | 1.7006 | 0.8029 | | 0.0031 | 20.0 | 5800 | 1.6777 | 0.8145 | | 0.0019 | 21.0 | 6090 | 1.7202 | 0.8079 | | 0.0019 | 22.0 | 6380 | 1.7539 | 0.8053 | | 0.0008 | 23.0 | 6670 | 1.7408 | 0.8119 | | 0.0008 | 24.0 | 6960 | 1.7388 | 0.8176 | | 0.0014 | 25.0 | 7250 | 1.7209 | 0.8156 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1