--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_6_binary results: [] --- # distilbert-base-uncased_fold_6_binary This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6838 - F1: 0.7881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 290 | 0.4181 | 0.7732 | | 0.4097 | 2.0 | 580 | 0.3967 | 0.7697 | | 0.4097 | 3.0 | 870 | 0.5811 | 0.7797 | | 0.2034 | 4.0 | 1160 | 0.8684 | 0.7320 | | 0.2034 | 5.0 | 1450 | 0.9116 | 0.7718 | | 0.0794 | 6.0 | 1740 | 1.0588 | 0.7690 | | 0.0278 | 7.0 | 2030 | 1.2092 | 0.7738 | | 0.0278 | 8.0 | 2320 | 1.2180 | 0.7685 | | 0.0233 | 9.0 | 2610 | 1.3005 | 0.7676 | | 0.0233 | 10.0 | 2900 | 1.4009 | 0.7634 | | 0.0093 | 11.0 | 3190 | 1.4528 | 0.7805 | | 0.0093 | 12.0 | 3480 | 1.4803 | 0.7859 | | 0.0088 | 13.0 | 3770 | 1.4775 | 0.7750 | | 0.0077 | 14.0 | 4060 | 1.6171 | 0.7699 | | 0.0077 | 15.0 | 4350 | 1.6429 | 0.7636 | | 0.0047 | 16.0 | 4640 | 1.5619 | 0.7819 | | 0.0047 | 17.0 | 4930 | 1.5833 | 0.7724 | | 0.0034 | 18.0 | 5220 | 1.6400 | 0.7853 | | 0.0008 | 19.0 | 5510 | 1.6508 | 0.7792 | | 0.0008 | 20.0 | 5800 | 1.6838 | 0.7881 | | 0.0009 | 21.0 | 6090 | 1.6339 | 0.7829 | | 0.0009 | 22.0 | 6380 | 1.6824 | 0.7806 | | 0.0016 | 23.0 | 6670 | 1.6867 | 0.7876 | | 0.0016 | 24.0 | 6960 | 1.7107 | 0.7877 | | 0.0013 | 25.0 | 7250 | 1.6933 | 0.7812 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1