--- base_model: mixedbread-ai/mxbai-embed-large-v1 language: - en library_name: sentence-transformers license: apache-2.0 pipeline_tag: feature-extraction tags: - mteb - transformers.js - transformers - llama-cpp - gguf-my-repo model-index: - name: mxbai-angle-large-v1 results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 75.044776119403 - type: ap value: 37.7362433623053 - type: f1 value: 68.92736573359774 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 93.84025000000001 - type: ap value: 90.93190875404055 - type: f1 value: 93.8297833897293 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 49.184 - type: f1 value: 48.74163227751588 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 41.252 - type: map_at_10 value: 57.778 - type: map_at_100 value: 58.233000000000004 - type: map_at_1000 value: 58.23700000000001 - type: map_at_3 value: 53.449999999999996 - type: map_at_5 value: 56.376000000000005 - type: mrr_at_1 value: 41.679 - type: mrr_at_10 value: 57.92699999999999 - type: mrr_at_100 value: 58.389 - type: mrr_at_1000 value: 58.391999999999996 - type: mrr_at_3 value: 53.651 - type: mrr_at_5 value: 56.521 - type: ndcg_at_1 value: 41.252 - type: ndcg_at_10 value: 66.018 - type: ndcg_at_100 value: 67.774 - type: ndcg_at_1000 value: 67.84400000000001 - type: ndcg_at_3 value: 57.372 - type: ndcg_at_5 value: 62.646 - type: precision_at_1 value: 41.252 - type: precision_at_10 value: 9.189 - type: precision_at_100 value: 0.991 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 22.902 - type: precision_at_5 value: 16.302 - type: recall_at_1 value: 41.252 - type: recall_at_10 value: 91.892 - type: recall_at_100 value: 99.14699999999999 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 68.706 - type: recall_at_5 value: 81.50800000000001 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 48.97294504317859 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 42.98071077674629 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 65.16477858490782 - type: mrr value: 78.23583080508287 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 89.6277629421789 - type: cos_sim_spearman value: 88.4056288400568 - type: euclidean_pearson value: 87.94871847578163 - type: euclidean_spearman value: 88.4056288400568 - type: manhattan_pearson value: 87.73271254229648 - type: manhattan_spearman value: 87.91826833762677 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 87.81818181818181 - type: f1 value: 87.79879337316918 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 39.91773608582761 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 36.73059477462478 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 32.745999999999995 - type: map_at_10 value: 43.632 - type: map_at_100 value: 45.206 - type: map_at_1000 value: 45.341 - type: map_at_3 value: 39.956 - type: map_at_5 value: 42.031 - type: mrr_at_1 value: 39.485 - type: mrr_at_10 value: 49.537 - type: mrr_at_100 value: 50.249 - type: mrr_at_1000 value: 50.294000000000004 - type: mrr_at_3 value: 46.757 - type: mrr_at_5 value: 48.481 - type: ndcg_at_1 value: 39.485 - type: ndcg_at_10 value: 50.058 - type: ndcg_at_100 value: 55.586 - type: ndcg_at_1000 value: 57.511 - type: ndcg_at_3 value: 44.786 - type: ndcg_at_5 value: 47.339999999999996 - type: precision_at_1 value: 39.485 - type: precision_at_10 value: 9.557 - type: precision_at_100 value: 1.552 - type: precision_at_1000 value: 0.202 - type: precision_at_3 value: 21.412 - type: precision_at_5 value: 15.479000000000001 - type: recall_at_1 value: 32.745999999999995 - type: recall_at_10 value: 62.056 - type: recall_at_100 value: 85.088 - type: recall_at_1000 value: 96.952 - type: recall_at_3 value: 46.959 - type: recall_at_5 value: 54.06999999999999 - type: map_at_1 value: 31.898 - type: map_at_10 value: 42.142 - type: map_at_100 value: 43.349 - type: map_at_1000 value: 43.483 - type: map_at_3 value: 39.18 - type: map_at_5 value: 40.733000000000004 - type: mrr_at_1 value: 39.617999999999995 - type: mrr_at_10 value: 47.922 - type: mrr_at_100 value: 48.547000000000004 - type: mrr_at_1000 value: 48.597 - type: mrr_at_3 value: 45.86 - type: mrr_at_5 value: 46.949000000000005 - type: ndcg_at_1 value: 39.617999999999995 - type: ndcg_at_10 value: 47.739 - type: ndcg_at_100 value: 51.934999999999995 - type: ndcg_at_1000 value: 54.007000000000005 - type: ndcg_at_3 value: 43.748 - type: ndcg_at_5 value: 45.345 - type: precision_at_1 value: 39.617999999999995 - type: precision_at_10 value: 8.962 - type: precision_at_100 value: 1.436 - type: precision_at_1000 value: 0.192 - type: precision_at_3 value: 21.083 - type: precision_at_5 value: 14.752 - type: recall_at_1 value: 31.898 - type: recall_at_10 value: 57.587999999999994 - type: recall_at_100 value: 75.323 - type: recall_at_1000 value: 88.304 - type: recall_at_3 value: 45.275 - type: recall_at_5 value: 49.99 - type: map_at_1 value: 40.458 - type: map_at_10 value: 52.942 - type: map_at_100 value: 53.974 - type: map_at_1000 value: 54.031 - type: map_at_3 value: 49.559999999999995 - type: map_at_5 value: 51.408 - type: mrr_at_1 value: 46.27 - type: mrr_at_10 value: 56.31699999999999 - type: mrr_at_100 value: 56.95099999999999 - type: mrr_at_1000 value: 56.98 - type: mrr_at_3 value: 53.835 - type: mrr_at_5 value: 55.252 - type: ndcg_at_1 value: 46.27 - type: ndcg_at_10 value: 58.964000000000006 - type: ndcg_at_100 value: 62.875 - type: ndcg_at_1000 value: 63.969 - type: ndcg_at_3 value: 53.297000000000004 - type: ndcg_at_5 value: 55.938 - type: precision_at_1 value: 46.27 - type: precision_at_10 value: 9.549000000000001 - type: precision_at_100 value: 1.2409999999999999 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_3 value: 23.762 - type: precision_at_5 value: 16.262999999999998 - type: recall_at_1 value: 40.458 - type: recall_at_10 value: 73.446 - type: recall_at_100 value: 90.12400000000001 - type: recall_at_1000 value: 97.795 - type: recall_at_3 value: 58.123000000000005 - type: recall_at_5 value: 64.68 - type: map_at_1 value: 27.443 - type: map_at_10 value: 36.081 - type: map_at_100 value: 37.163000000000004 - type: map_at_1000 value: 37.232 - type: map_at_3 value: 33.308 - type: map_at_5 value: 34.724 - type: mrr_at_1 value: 29.492 - type: mrr_at_10 value: 38.138 - type: mrr_at_100 value: 39.065 - type: mrr_at_1000 value: 39.119 - type: mrr_at_3 value: 35.593 - type: mrr_at_5 value: 36.785000000000004 - type: ndcg_at_1 value: 29.492 - type: ndcg_at_10 value: 41.134 - type: ndcg_at_100 value: 46.300999999999995 - type: ndcg_at_1000 value: 48.106 - type: ndcg_at_3 value: 35.77 - type: ndcg_at_5 value: 38.032 - type: precision_at_1 value: 29.492 - type: precision_at_10 value: 6.249 - type: precision_at_100 value: 0.9299999999999999 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 15.065999999999999 - type: precision_at_5 value: 10.373000000000001 - type: recall_at_1 value: 27.443 - type: recall_at_10 value: 54.80199999999999 - type: recall_at_100 value: 78.21900000000001 - type: recall_at_1000 value: 91.751 - type: recall_at_3 value: 40.211000000000006 - type: recall_at_5 value: 45.599000000000004 - type: map_at_1 value: 18.731 - type: map_at_10 value: 26.717999999999996 - type: map_at_100 value: 27.897 - type: map_at_1000 value: 28.029 - type: map_at_3 value: 23.91 - type: map_at_5 value: 25.455 - type: mrr_at_1 value: 23.134 - type: mrr_at_10 value: 31.769 - type: mrr_at_100 value: 32.634 - type: mrr_at_1000 value: 32.707 - type: mrr_at_3 value: 28.938999999999997 - type: mrr_at_5 value: 30.531000000000002 - type: ndcg_at_1 value: 23.134 - type: ndcg_at_10 value: 32.249 - type: ndcg_at_100 value: 37.678 - type: ndcg_at_1000 value: 40.589999999999996 - type: ndcg_at_3 value: 26.985999999999997 - type: ndcg_at_5 value: 29.457 - type: precision_at_1 value: 23.134 - type: precision_at_10 value: 5.8709999999999996 - type: precision_at_100 value: 0.988 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_3 value: 12.852 - type: precision_at_5 value: 9.428 - type: recall_at_1 value: 18.731 - type: recall_at_10 value: 44.419 - type: recall_at_100 value: 67.851 - type: recall_at_1000 value: 88.103 - type: recall_at_3 value: 29.919 - type: recall_at_5 value: 36.230000000000004 - type: map_at_1 value: 30.324 - type: map_at_10 value: 41.265 - type: map_at_100 value: 42.559000000000005 - type: map_at_1000 value: 42.669000000000004 - type: map_at_3 value: 38.138 - type: map_at_5 value: 39.881 - type: mrr_at_1 value: 36.67 - type: mrr_at_10 value: 46.774 - type: mrr_at_100 value: 47.554 - type: mrr_at_1000 value: 47.593 - type: mrr_at_3 value: 44.338 - type: mrr_at_5 value: 45.723 - type: ndcg_at_1 value: 36.67 - type: ndcg_at_10 value: 47.367 - type: ndcg_at_100 value: 52.623 - type: ndcg_at_1000 value: 54.59 - type: ndcg_at_3 value: 42.323 - type: ndcg_at_5 value: 44.727 - type: precision_at_1 value: 36.67 - type: precision_at_10 value: 8.518 - type: precision_at_100 value: 1.2890000000000001 - type: precision_at_1000 value: 0.163 - type: precision_at_3 value: 19.955000000000002 - type: precision_at_5 value: 14.11 - type: recall_at_1 value: 30.324 - type: recall_at_10 value: 59.845000000000006 - type: recall_at_100 value: 81.77499999999999 - type: recall_at_1000 value: 94.463 - type: recall_at_3 value: 46.019 - type: recall_at_5 value: 52.163000000000004 - type: map_at_1 value: 24.229 - type: map_at_10 value: 35.004000000000005 - type: map_at_100 value: 36.409000000000006 - type: map_at_1000 value: 36.521 - type: map_at_3 value: 31.793 - type: map_at_5 value: 33.432 - type: mrr_at_1 value: 30.365 - type: mrr_at_10 value: 40.502 - type: mrr_at_100 value: 41.372 - type: mrr_at_1000 value: 41.435 - type: mrr_at_3 value: 37.804 - type: mrr_at_5 value: 39.226 - type: ndcg_at_1 value: 30.365 - type: ndcg_at_10 value: 41.305 - type: ndcg_at_100 value: 47.028999999999996 - type: ndcg_at_1000 value: 49.375 - type: ndcg_at_3 value: 35.85 - type: ndcg_at_5 value: 38.12 - type: precision_at_1 value: 30.365 - type: precision_at_10 value: 7.808 - type: precision_at_100 value: 1.228 - type: precision_at_1000 value: 0.161 - type: precision_at_3 value: 17.352 - type: precision_at_5 value: 12.42 - type: recall_at_1 value: 24.229 - type: recall_at_10 value: 54.673 - type: recall_at_100 value: 78.766 - type: recall_at_1000 value: 94.625 - type: recall_at_3 value: 39.602 - type: recall_at_5 value: 45.558 - type: map_at_1 value: 26.695 - type: map_at_10 value: 36.0895 - type: map_at_100 value: 37.309416666666664 - type: map_at_1000 value: 37.42558333333334 - type: map_at_3 value: 33.19616666666666 - type: map_at_5 value: 34.78641666666667 - type: mrr_at_1 value: 31.486083333333337 - type: mrr_at_10 value: 40.34774999999999 - type: mrr_at_100 value: 41.17533333333333 - type: mrr_at_1000 value: 41.231583333333326 - type: mrr_at_3 value: 37.90075 - type: mrr_at_5 value: 39.266999999999996 - type: ndcg_at_1 value: 31.486083333333337 - type: ndcg_at_10 value: 41.60433333333334 - type: ndcg_at_100 value: 46.74525 - type: ndcg_at_1000 value: 48.96166666666667 - type: ndcg_at_3 value: 36.68825 - type: ndcg_at_5 value: 38.966499999999996 - type: precision_at_1 value: 31.486083333333337 - type: precision_at_10 value: 7.29675 - type: precision_at_100 value: 1.1621666666666666 - type: precision_at_1000 value: 0.1545 - type: precision_at_3 value: 16.8815 - type: precision_at_5 value: 11.974583333333333 - type: recall_at_1 value: 26.695 - type: recall_at_10 value: 53.651916666666665 - type: recall_at_100 value: 76.12083333333332 - type: recall_at_1000 value: 91.31191666666668 - type: recall_at_3 value: 40.03575 - type: recall_at_5 value: 45.876666666666665 - type: map_at_1 value: 25.668000000000003 - type: map_at_10 value: 32.486 - type: map_at_100 value: 33.371 - type: map_at_1000 value: 33.458 - type: map_at_3 value: 30.261 - type: map_at_5 value: 31.418000000000003 - type: mrr_at_1 value: 28.988000000000003 - type: mrr_at_10 value: 35.414 - type: mrr_at_100 value: 36.149 - type: mrr_at_1000 value: 36.215 - type: mrr_at_3 value: 33.333 - type: mrr_at_5 value: 34.43 - type: ndcg_at_1 value: 28.988000000000003 - type: ndcg_at_10 value: 36.732 - type: ndcg_at_100 value: 41.331 - type: ndcg_at_1000 value: 43.575 - type: ndcg_at_3 value: 32.413 - type: ndcg_at_5 value: 34.316 - type: precision_at_1 value: 28.988000000000003 - type: precision_at_10 value: 5.7059999999999995 - type: precision_at_100 value: 0.882 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 13.65 - type: precision_at_5 value: 9.417 - type: recall_at_1 value: 25.668000000000003 - type: recall_at_10 value: 47.147 - type: recall_at_100 value: 68.504 - type: recall_at_1000 value: 85.272 - type: recall_at_3 value: 35.19 - type: recall_at_5 value: 39.925 - type: map_at_1 value: 17.256 - type: map_at_10 value: 24.58 - type: map_at_100 value: 25.773000000000003 - type: map_at_1000 value: 25.899 - type: map_at_3 value: 22.236 - type: map_at_5 value: 23.507 - type: mrr_at_1 value: 20.957 - type: mrr_at_10 value: 28.416000000000004 - type: mrr_at_100 value: 29.447000000000003 - type: mrr_at_1000 value: 29.524 - type: mrr_at_3 value: 26.245 - type: mrr_at_5 value: 27.451999999999998 - type: ndcg_at_1 value: 20.957 - type: ndcg_at_10 value: 29.285 - type: ndcg_at_100 value: 35.003 - type: ndcg_at_1000 value: 37.881 - type: ndcg_at_3 value: 25.063000000000002 - type: ndcg_at_5 value: 26.983 - type: precision_at_1 value: 20.957 - type: precision_at_10 value: 5.344 - type: precision_at_100 value: 0.958 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_3 value: 11.918 - type: precision_at_5 value: 8.596 - type: recall_at_1 value: 17.256 - type: recall_at_10 value: 39.644 - type: recall_at_100 value: 65.279 - type: recall_at_1000 value: 85.693 - type: recall_at_3 value: 27.825 - type: recall_at_5 value: 32.792 - type: map_at_1 value: 26.700000000000003 - type: map_at_10 value: 36.205999999999996 - type: map_at_100 value: 37.316 - type: map_at_1000 value: 37.425000000000004 - type: map_at_3 value: 33.166000000000004 - type: map_at_5 value: 35.032999999999994 - type: mrr_at_1 value: 31.436999999999998 - type: mrr_at_10 value: 40.61 - type: mrr_at_100 value: 41.415 - type: mrr_at_1000 value: 41.48 - type: mrr_at_3 value: 37.966 - type: mrr_at_5 value: 39.599000000000004 - type: ndcg_at_1 value: 31.436999999999998 - type: ndcg_at_10 value: 41.771 - type: ndcg_at_100 value: 46.784 - type: ndcg_at_1000 value: 49.183 - type: ndcg_at_3 value: 36.437000000000005 - type: ndcg_at_5 value: 39.291 - type: precision_at_1 value: 31.436999999999998 - type: precision_at_10 value: 6.987 - type: precision_at_100 value: 1.072 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 16.448999999999998 - type: precision_at_5 value: 11.866 - type: recall_at_1 value: 26.700000000000003 - type: recall_at_10 value: 54.301 - type: recall_at_100 value: 75.871 - type: recall_at_1000 value: 92.529 - type: recall_at_3 value: 40.201 - type: recall_at_5 value: 47.208 - type: map_at_1 value: 24.296 - type: map_at_10 value: 33.116 - type: map_at_100 value: 34.81 - type: map_at_1000 value: 35.032000000000004 - type: map_at_3 value: 30.105999999999998 - type: map_at_5 value: 31.839000000000002 - type: mrr_at_1 value: 29.051 - type: mrr_at_10 value: 37.803 - type: mrr_at_100 value: 38.856 - type: mrr_at_1000 value: 38.903999999999996 - type: mrr_at_3 value: 35.211 - type: mrr_at_5 value: 36.545 - type: ndcg_at_1 value: 29.051 - type: ndcg_at_10 value: 39.007 - type: ndcg_at_100 value: 45.321 - type: ndcg_at_1000 value: 47.665 - type: ndcg_at_3 value: 34.1 - type: ndcg_at_5 value: 36.437000000000005 - type: precision_at_1 value: 29.051 - type: precision_at_10 value: 7.668 - type: precision_at_100 value: 1.542 - type: precision_at_1000 value: 0.24 - type: precision_at_3 value: 16.14 - type: precision_at_5 value: 11.897 - type: recall_at_1 value: 24.296 - type: recall_at_10 value: 49.85 - type: recall_at_100 value: 78.457 - type: recall_at_1000 value: 92.618 - type: recall_at_3 value: 36.138999999999996 - type: recall_at_5 value: 42.223 - type: map_at_1 value: 20.591 - type: map_at_10 value: 28.902 - type: map_at_100 value: 29.886000000000003 - type: map_at_1000 value: 29.987000000000002 - type: map_at_3 value: 26.740000000000002 - type: map_at_5 value: 27.976 - type: mrr_at_1 value: 22.366 - type: mrr_at_10 value: 30.971 - type: mrr_at_100 value: 31.865 - type: mrr_at_1000 value: 31.930999999999997 - type: mrr_at_3 value: 28.927999999999997 - type: mrr_at_5 value: 30.231 - type: ndcg_at_1 value: 22.366 - type: ndcg_at_10 value: 33.641 - type: ndcg_at_100 value: 38.477 - type: ndcg_at_1000 value: 41.088 - type: ndcg_at_3 value: 29.486 - type: ndcg_at_5 value: 31.612000000000002 - type: precision_at_1 value: 22.366 - type: precision_at_10 value: 5.3420000000000005 - type: precision_at_100 value: 0.828 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 12.939 - type: precision_at_5 value: 9.094 - type: recall_at_1 value: 20.591 - type: recall_at_10 value: 46.052 - type: recall_at_100 value: 68.193 - type: recall_at_1000 value: 87.638 - type: recall_at_3 value: 34.966 - type: recall_at_5 value: 40.082 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 15.091 - type: map_at_10 value: 26.38 - type: map_at_100 value: 28.421999999999997 - type: map_at_1000 value: 28.621999999999996 - type: map_at_3 value: 21.597 - type: map_at_5 value: 24.12 - type: mrr_at_1 value: 34.266999999999996 - type: mrr_at_10 value: 46.864 - type: mrr_at_100 value: 47.617 - type: mrr_at_1000 value: 47.644 - type: mrr_at_3 value: 43.312 - type: mrr_at_5 value: 45.501000000000005 - type: ndcg_at_1 value: 34.266999999999996 - type: ndcg_at_10 value: 36.095 - type: ndcg_at_100 value: 43.447 - type: ndcg_at_1000 value: 46.661 - type: ndcg_at_3 value: 29.337999999999997 - type: ndcg_at_5 value: 31.824 - type: precision_at_1 value: 34.266999999999996 - type: precision_at_10 value: 11.472 - type: precision_at_100 value: 1.944 - type: precision_at_1000 value: 0.255 - type: precision_at_3 value: 21.933 - type: precision_at_5 value: 17.224999999999998 - type: recall_at_1 value: 15.091 - type: recall_at_10 value: 43.022 - type: recall_at_100 value: 68.075 - type: recall_at_1000 value: 85.76 - type: recall_at_3 value: 26.564 - type: recall_at_5 value: 33.594 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 9.252 - type: map_at_10 value: 20.923 - type: map_at_100 value: 30.741000000000003 - type: map_at_1000 value: 32.542 - type: map_at_3 value: 14.442 - type: map_at_5 value: 17.399 - type: mrr_at_1 value: 70.25 - type: mrr_at_10 value: 78.17 - type: mrr_at_100 value: 78.444 - type: mrr_at_1000 value: 78.45100000000001 - type: mrr_at_3 value: 76.958 - type: mrr_at_5 value: 77.571 - type: ndcg_at_1 value: 58.375 - type: ndcg_at_10 value: 44.509 - type: ndcg_at_100 value: 49.897999999999996 - type: ndcg_at_1000 value: 57.269999999999996 - type: ndcg_at_3 value: 48.64 - type: ndcg_at_5 value: 46.697 - type: precision_at_1 value: 70.25 - type: precision_at_10 value: 36.05 - type: precision_at_100 value: 11.848 - type: precision_at_1000 value: 2.213 - type: precision_at_3 value: 52.917 - type: precision_at_5 value: 45.7 - type: recall_at_1 value: 9.252 - type: recall_at_10 value: 27.006999999999998 - type: recall_at_100 value: 57.008 - type: recall_at_1000 value: 80.697 - type: recall_at_3 value: 15.798000000000002 - type: recall_at_5 value: 20.4 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 50.88 - type: f1 value: 45.545495028653384 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 75.424 - type: map_at_10 value: 83.435 - type: map_at_100 value: 83.66900000000001 - type: map_at_1000 value: 83.685 - type: map_at_3 value: 82.39800000000001 - type: map_at_5 value: 83.07 - type: mrr_at_1 value: 81.113 - type: mrr_at_10 value: 87.77199999999999 - type: mrr_at_100 value: 87.862 - type: mrr_at_1000 value: 87.86500000000001 - type: mrr_at_3 value: 87.17099999999999 - type: mrr_at_5 value: 87.616 - type: ndcg_at_1 value: 81.113 - type: ndcg_at_10 value: 86.909 - type: ndcg_at_100 value: 87.746 - type: ndcg_at_1000 value: 88.017 - type: ndcg_at_3 value: 85.368 - type: ndcg_at_5 value: 86.28099999999999 - type: precision_at_1 value: 81.113 - type: precision_at_10 value: 10.363 - type: precision_at_100 value: 1.102 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 32.507999999999996 - type: precision_at_5 value: 20.138 - type: recall_at_1 value: 75.424 - type: recall_at_10 value: 93.258 - type: recall_at_100 value: 96.545 - type: recall_at_1000 value: 98.284 - type: recall_at_3 value: 89.083 - type: recall_at_5 value: 91.445 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 22.532 - type: map_at_10 value: 37.141999999999996 - type: map_at_100 value: 39.162 - type: map_at_1000 value: 39.322 - type: map_at_3 value: 32.885 - type: map_at_5 value: 35.093999999999994 - type: mrr_at_1 value: 44.29 - type: mrr_at_10 value: 53.516 - type: mrr_at_100 value: 54.24 - type: mrr_at_1000 value: 54.273 - type: mrr_at_3 value: 51.286 - type: mrr_at_5 value: 52.413 - type: ndcg_at_1 value: 44.29 - type: ndcg_at_10 value: 45.268 - type: ndcg_at_100 value: 52.125 - type: ndcg_at_1000 value: 54.778000000000006 - type: ndcg_at_3 value: 41.829 - type: ndcg_at_5 value: 42.525 - type: precision_at_1 value: 44.29 - type: precision_at_10 value: 12.5 - type: precision_at_100 value: 1.9720000000000002 - type: precision_at_1000 value: 0.245 - type: precision_at_3 value: 28.035 - type: precision_at_5 value: 20.093 - type: recall_at_1 value: 22.532 - type: recall_at_10 value: 52.419000000000004 - type: recall_at_100 value: 77.43299999999999 - type: recall_at_1000 value: 93.379 - type: recall_at_3 value: 38.629000000000005 - type: recall_at_5 value: 43.858000000000004 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 39.359 - type: map_at_10 value: 63.966 - type: map_at_100 value: 64.87 - type: map_at_1000 value: 64.92599999999999 - type: map_at_3 value: 60.409 - type: map_at_5 value: 62.627 - type: mrr_at_1 value: 78.717 - type: mrr_at_10 value: 84.468 - type: mrr_at_100 value: 84.655 - type: mrr_at_1000 value: 84.661 - type: mrr_at_3 value: 83.554 - type: mrr_at_5 value: 84.133 - type: ndcg_at_1 value: 78.717 - type: ndcg_at_10 value: 72.03399999999999 - type: ndcg_at_100 value: 75.158 - type: ndcg_at_1000 value: 76.197 - type: ndcg_at_3 value: 67.049 - type: ndcg_at_5 value: 69.808 - type: precision_at_1 value: 78.717 - type: precision_at_10 value: 15.201 - type: precision_at_100 value: 1.764 - type: precision_at_1000 value: 0.19 - type: precision_at_3 value: 43.313 - type: precision_at_5 value: 28.165000000000003 - type: recall_at_1 value: 39.359 - type: recall_at_10 value: 76.003 - type: recall_at_100 value: 88.197 - type: recall_at_1000 value: 95.003 - type: recall_at_3 value: 64.97 - type: recall_at_5 value: 70.41199999999999 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 92.83200000000001 - type: ap value: 89.33560571859861 - type: f1 value: 92.82322915005167 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 21.983 - type: map_at_10 value: 34.259 - type: map_at_100 value: 35.432 - type: map_at_1000 value: 35.482 - type: map_at_3 value: 30.275999999999996 - type: map_at_5 value: 32.566 - type: mrr_at_1 value: 22.579 - type: mrr_at_10 value: 34.882999999999996 - type: mrr_at_100 value: 35.984 - type: mrr_at_1000 value: 36.028 - type: mrr_at_3 value: 30.964999999999996 - type: mrr_at_5 value: 33.245000000000005 - type: ndcg_at_1 value: 22.564 - type: ndcg_at_10 value: 41.258 - type: ndcg_at_100 value: 46.824 - type: ndcg_at_1000 value: 48.037 - type: ndcg_at_3 value: 33.17 - type: ndcg_at_5 value: 37.263000000000005 - type: precision_at_1 value: 22.564 - type: precision_at_10 value: 6.572 - type: precision_at_100 value: 0.935 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.130999999999998 - type: precision_at_5 value: 10.544 - type: recall_at_1 value: 21.983 - type: recall_at_10 value: 62.775000000000006 - type: recall_at_100 value: 88.389 - type: recall_at_1000 value: 97.603 - type: recall_at_3 value: 40.878 - type: recall_at_5 value: 50.690000000000005 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.95120839033288 - type: f1 value: 93.73824125055208 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 76.78978568171455 - type: f1 value: 57.50180552858304 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 76.24411566913248 - type: f1 value: 74.37851403532832 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 79.94620040349699 - type: f1 value: 80.21293397970435 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 33.44403096245675 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 31.659594631336812 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 32.53833075108798 - type: mrr value: 33.78840823218308 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 7.185999999999999 - type: map_at_10 value: 15.193999999999999 - type: map_at_100 value: 19.538 - type: map_at_1000 value: 21.178 - type: map_at_3 value: 11.208 - type: map_at_5 value: 12.745999999999999 - type: mrr_at_1 value: 48.916 - type: mrr_at_10 value: 58.141 - type: mrr_at_100 value: 58.656 - type: mrr_at_1000 value: 58.684999999999995 - type: mrr_at_3 value: 55.521 - type: mrr_at_5 value: 57.239 - type: ndcg_at_1 value: 47.059 - type: ndcg_at_10 value: 38.644 - type: ndcg_at_100 value: 36.272999999999996 - type: ndcg_at_1000 value: 44.996 - type: ndcg_at_3 value: 43.293 - type: ndcg_at_5 value: 40.819 - type: precision_at_1 value: 48.916 - type: precision_at_10 value: 28.607 - type: precision_at_100 value: 9.195 - type: precision_at_1000 value: 2.225 - type: precision_at_3 value: 40.454 - type: precision_at_5 value: 34.985 - type: recall_at_1 value: 7.185999999999999 - type: recall_at_10 value: 19.654 - type: recall_at_100 value: 37.224000000000004 - type: recall_at_1000 value: 68.663 - type: recall_at_3 value: 12.158 - type: recall_at_5 value: 14.674999999999999 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 31.552000000000003 - type: map_at_10 value: 47.75 - type: map_at_100 value: 48.728 - type: map_at_1000 value: 48.754 - type: map_at_3 value: 43.156 - type: map_at_5 value: 45.883 - type: mrr_at_1 value: 35.66 - type: mrr_at_10 value: 50.269 - type: mrr_at_100 value: 50.974 - type: mrr_at_1000 value: 50.991 - type: mrr_at_3 value: 46.519 - type: mrr_at_5 value: 48.764 - type: ndcg_at_1 value: 35.632000000000005 - type: ndcg_at_10 value: 55.786 - type: ndcg_at_100 value: 59.748999999999995 - type: ndcg_at_1000 value: 60.339 - type: ndcg_at_3 value: 47.292 - type: ndcg_at_5 value: 51.766999999999996 - type: precision_at_1 value: 35.632000000000005 - type: precision_at_10 value: 9.267 - type: precision_at_100 value: 1.149 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 21.601 - type: precision_at_5 value: 15.539 - type: recall_at_1 value: 31.552000000000003 - type: recall_at_10 value: 77.62400000000001 - type: recall_at_100 value: 94.527 - type: recall_at_1000 value: 98.919 - type: recall_at_3 value: 55.898 - type: recall_at_5 value: 66.121 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 71.414 - type: map_at_10 value: 85.37400000000001 - type: map_at_100 value: 86.01100000000001 - type: map_at_1000 value: 86.027 - type: map_at_3 value: 82.562 - type: map_at_5 value: 84.284 - type: mrr_at_1 value: 82.24000000000001 - type: mrr_at_10 value: 88.225 - type: mrr_at_100 value: 88.324 - type: mrr_at_1000 value: 88.325 - type: mrr_at_3 value: 87.348 - type: mrr_at_5 value: 87.938 - type: ndcg_at_1 value: 82.24000000000001 - type: ndcg_at_10 value: 88.97699999999999 - type: ndcg_at_100 value: 90.16 - type: ndcg_at_1000 value: 90.236 - type: ndcg_at_3 value: 86.371 - type: ndcg_at_5 value: 87.746 - type: precision_at_1 value: 82.24000000000001 - type: precision_at_10 value: 13.481000000000002 - type: precision_at_100 value: 1.534 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.86 - type: precision_at_5 value: 24.738 - type: recall_at_1 value: 71.414 - type: recall_at_10 value: 95.735 - type: recall_at_100 value: 99.696 - type: recall_at_1000 value: 99.979 - type: recall_at_3 value: 88.105 - type: recall_at_5 value: 92.17999999999999 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 60.22146692057259 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 65.29273320614578 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 5.023 - type: map_at_10 value: 14.161000000000001 - type: map_at_100 value: 16.68 - type: map_at_1000 value: 17.072000000000003 - type: map_at_3 value: 9.763 - type: map_at_5 value: 11.977 - type: mrr_at_1 value: 24.8 - type: mrr_at_10 value: 37.602999999999994 - type: mrr_at_100 value: 38.618 - type: mrr_at_1000 value: 38.659 - type: mrr_at_3 value: 34.117 - type: mrr_at_5 value: 36.082 - type: ndcg_at_1 value: 24.8 - type: ndcg_at_10 value: 23.316 - type: ndcg_at_100 value: 32.613 - type: ndcg_at_1000 value: 38.609 - type: ndcg_at_3 value: 21.697 - type: ndcg_at_5 value: 19.241 - type: precision_at_1 value: 24.8 - type: precision_at_10 value: 12.36 - type: precision_at_100 value: 2.593 - type: precision_at_1000 value: 0.402 - type: precision_at_3 value: 20.767 - type: precision_at_5 value: 17.34 - type: recall_at_1 value: 5.023 - type: recall_at_10 value: 25.069999999999997 - type: recall_at_100 value: 52.563 - type: recall_at_1000 value: 81.525 - type: recall_at_3 value: 12.613 - type: recall_at_5 value: 17.583 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 87.71506247604255 - type: cos_sim_spearman value: 82.91813463738802 - type: euclidean_pearson value: 85.5154616194479 - type: euclidean_spearman value: 82.91815254466314 - type: manhattan_pearson value: 85.5280917850374 - type: manhattan_spearman value: 82.92276537286398 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 87.43772054228462 - type: cos_sim_spearman value: 78.75750601716682 - type: euclidean_pearson value: 85.76074482955764 - type: euclidean_spearman value: 78.75651057223058 - type: manhattan_pearson value: 85.73390291701668 - type: manhattan_spearman value: 78.72699385957797 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 89.58144067172472 - type: cos_sim_spearman value: 90.3524512966946 - type: euclidean_pearson value: 89.71365391594237 - type: euclidean_spearman value: 90.35239632843408 - type: manhattan_pearson value: 89.66905421746478 - type: manhattan_spearman value: 90.31508211683513 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 87.77692637102102 - type: cos_sim_spearman value: 85.45710562643485 - type: euclidean_pearson value: 87.42456979928723 - type: euclidean_spearman value: 85.45709386240908 - type: manhattan_pearson value: 87.40754529526272 - type: manhattan_spearman value: 85.44834854173303 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 88.28491331695997 - type: cos_sim_spearman value: 89.62037029566964 - type: euclidean_pearson value: 89.02479391362826 - type: euclidean_spearman value: 89.62036733618466 - type: manhattan_pearson value: 89.00394756040342 - type: manhattan_spearman value: 89.60867744215236 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 85.08911381280191 - type: cos_sim_spearman value: 86.5791780765767 - type: euclidean_pearson value: 86.16063473577861 - type: euclidean_spearman value: 86.57917745378766 - type: manhattan_pearson value: 86.13677924604175 - type: manhattan_spearman value: 86.56115615768685 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 89.58029496205235 - type: cos_sim_spearman value: 89.49551253826998 - type: euclidean_pearson value: 90.13714840963748 - type: euclidean_spearman value: 89.49551253826998 - type: manhattan_pearson value: 90.13039633601363 - type: manhattan_spearman value: 89.4513453745516 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 69.01546399666435 - type: cos_sim_spearman value: 69.33824484595624 - type: euclidean_pearson value: 70.76511642998874 - type: euclidean_spearman value: 69.33824484595624 - type: manhattan_pearson value: 70.84320785047453 - type: manhattan_spearman value: 69.54233632223537 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 87.26389196390119 - type: cos_sim_spearman value: 89.09721478341385 - type: euclidean_pearson value: 88.97208685922517 - type: euclidean_spearman value: 89.09720927308881 - type: manhattan_pearson value: 88.97513670502573 - type: manhattan_spearman value: 89.07647853984004 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 87.53075025771936 - type: mrr value: 96.24327651288436 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 60.428000000000004 - type: map_at_10 value: 70.088 - type: map_at_100 value: 70.589 - type: map_at_1000 value: 70.614 - type: map_at_3 value: 67.191 - type: map_at_5 value: 68.515 - type: mrr_at_1 value: 63.333 - type: mrr_at_10 value: 71.13000000000001 - type: mrr_at_100 value: 71.545 - type: mrr_at_1000 value: 71.569 - type: mrr_at_3 value: 68.944 - type: mrr_at_5 value: 70.078 - type: ndcg_at_1 value: 63.333 - type: ndcg_at_10 value: 74.72800000000001 - type: ndcg_at_100 value: 76.64999999999999 - type: ndcg_at_1000 value: 77.176 - type: ndcg_at_3 value: 69.659 - type: ndcg_at_5 value: 71.626 - type: precision_at_1 value: 63.333 - type: precision_at_10 value: 10 - type: precision_at_100 value: 1.09 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 27.111 - type: precision_at_5 value: 17.666999999999998 - type: recall_at_1 value: 60.428000000000004 - type: recall_at_10 value: 87.98899999999999 - type: recall_at_100 value: 96.167 - type: recall_at_1000 value: 100 - type: recall_at_3 value: 74.006 - type: recall_at_5 value: 79.05 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.87326732673267 - type: cos_sim_ap value: 96.81770773701805 - type: cos_sim_f1 value: 93.6318407960199 - type: cos_sim_precision value: 93.16831683168317 - type: cos_sim_recall value: 94.1 - type: dot_accuracy value: 99.87326732673267 - type: dot_ap value: 96.8174218946665 - type: dot_f1 value: 93.6318407960199 - type: dot_precision value: 93.16831683168317 - type: dot_recall value: 94.1 - type: euclidean_accuracy value: 99.87326732673267 - type: euclidean_ap value: 96.81770773701807 - type: euclidean_f1 value: 93.6318407960199 - type: euclidean_precision value: 93.16831683168317 - type: euclidean_recall value: 94.1 - type: manhattan_accuracy value: 99.87227722772278 - type: manhattan_ap value: 96.83164126821747 - type: manhattan_f1 value: 93.54677338669335 - type: manhattan_precision value: 93.5935935935936 - type: manhattan_recall value: 93.5 - type: max_accuracy value: 99.87326732673267 - type: max_ap value: 96.83164126821747 - type: max_f1 value: 93.6318407960199 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 65.6212042420246 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 35.779230635982564 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 55.217701909036286 - type: mrr value: 56.17658995416349 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.954206018888453 - type: cos_sim_spearman value: 32.71062599450096 - type: dot_pearson value: 30.95420929056943 - type: dot_spearman value: 32.71062599450096 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.22699999999999998 - type: map_at_10 value: 1.924 - type: map_at_100 value: 10.525 - type: map_at_1000 value: 24.973 - type: map_at_3 value: 0.638 - type: map_at_5 value: 1.0659999999999998 - type: mrr_at_1 value: 84 - type: mrr_at_10 value: 91.067 - type: mrr_at_100 value: 91.067 - type: mrr_at_1000 value: 91.067 - type: mrr_at_3 value: 90.667 - type: mrr_at_5 value: 91.067 - type: ndcg_at_1 value: 81 - type: ndcg_at_10 value: 75.566 - type: ndcg_at_100 value: 56.387 - type: ndcg_at_1000 value: 49.834 - type: ndcg_at_3 value: 80.899 - type: ndcg_at_5 value: 80.75099999999999 - type: precision_at_1 value: 84 - type: precision_at_10 value: 79 - type: precision_at_100 value: 57.56 - type: precision_at_1000 value: 21.8 - type: precision_at_3 value: 84.667 - type: precision_at_5 value: 85.2 - type: recall_at_1 value: 0.22699999999999998 - type: recall_at_10 value: 2.136 - type: recall_at_100 value: 13.861 - type: recall_at_1000 value: 46.299 - type: recall_at_3 value: 0.6649999999999999 - type: recall_at_5 value: 1.145 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.752 - type: map_at_10 value: 9.951 - type: map_at_100 value: 16.794999999999998 - type: map_at_1000 value: 18.251 - type: map_at_3 value: 5.288 - type: map_at_5 value: 6.954000000000001 - type: mrr_at_1 value: 38.775999999999996 - type: mrr_at_10 value: 50.458000000000006 - type: mrr_at_100 value: 51.324999999999996 - type: mrr_at_1000 value: 51.339999999999996 - type: mrr_at_3 value: 46.939 - type: mrr_at_5 value: 47.857 - type: ndcg_at_1 value: 36.735 - type: ndcg_at_10 value: 25.198999999999998 - type: ndcg_at_100 value: 37.938 - type: ndcg_at_1000 value: 49.145 - type: ndcg_at_3 value: 29.348000000000003 - type: ndcg_at_5 value: 25.804 - type: precision_at_1 value: 38.775999999999996 - type: precision_at_10 value: 22.041 - type: precision_at_100 value: 7.939 - type: precision_at_1000 value: 1.555 - type: precision_at_3 value: 29.932 - type: precision_at_5 value: 24.490000000000002 - type: recall_at_1 value: 2.752 - type: recall_at_10 value: 16.197 - type: recall_at_100 value: 49.166 - type: recall_at_1000 value: 84.18900000000001 - type: recall_at_3 value: 6.438000000000001 - type: recall_at_5 value: 9.093 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.47980000000001 - type: ap value: 14.605194452178754 - type: f1 value: 55.07362924988948 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 59.708545557441994 - type: f1 value: 60.04751270975683 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 53.21105960597211 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 87.58419264469214 - type: cos_sim_ap value: 78.55300004517404 - type: cos_sim_f1 value: 71.49673530889001 - type: cos_sim_precision value: 68.20795400095831 - type: cos_sim_recall value: 75.11873350923483 - type: dot_accuracy value: 87.58419264469214 - type: dot_ap value: 78.55297659559511 - type: dot_f1 value: 71.49673530889001 - type: dot_precision value: 68.20795400095831 - type: dot_recall value: 75.11873350923483 - type: euclidean_accuracy value: 87.58419264469214 - type: euclidean_ap value: 78.55300477331477 - type: euclidean_f1 value: 71.49673530889001 - type: euclidean_precision value: 68.20795400095831 - type: euclidean_recall value: 75.11873350923483 - type: manhattan_accuracy value: 87.5663110210407 - type: manhattan_ap value: 78.49982050876562 - type: manhattan_f1 value: 71.35488740722104 - type: manhattan_precision value: 68.18946862226497 - type: manhattan_recall value: 74.82849604221636 - type: max_accuracy value: 87.58419264469214 - type: max_ap value: 78.55300477331477 - type: max_f1 value: 71.49673530889001 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.09069740365584 - type: cos_sim_ap value: 86.22749303724757 - type: cos_sim_f1 value: 78.36863452005407 - type: cos_sim_precision value: 76.49560117302053 - type: cos_sim_recall value: 80.33569448721897 - type: dot_accuracy value: 89.09069740365584 - type: dot_ap value: 86.22750233655673 - type: dot_f1 value: 78.36863452005407 - type: dot_precision value: 76.49560117302053 - type: dot_recall value: 80.33569448721897 - type: euclidean_accuracy value: 89.09069740365584 - type: euclidean_ap value: 86.22749355597347 - type: euclidean_f1 value: 78.36863452005407 - type: euclidean_precision value: 76.49560117302053 - type: euclidean_recall value: 80.33569448721897 - type: manhattan_accuracy value: 89.08293553770326 - type: manhattan_ap value: 86.21913616084771 - type: manhattan_f1 value: 78.3907031479847 - type: manhattan_precision value: 75.0352013517319 - type: manhattan_recall value: 82.06036341238065 - type: max_accuracy value: 89.09069740365584 - type: max_ap value: 86.22750233655673 - type: max_f1 value: 78.3907031479847 --- # elliotsayes/mxbai-embed-large-v1-Q4_K_M-GGUF This model was converted to GGUF format from [`mixedbread-ai/mxbai-embed-large-v1`](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo elliotsayes/mxbai-embed-large-v1-Q4_K_M-GGUF --hf-file mxbai-embed-large-v1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo elliotsayes/mxbai-embed-large-v1-Q4_K_M-GGUF --hf-file mxbai-embed-large-v1-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo elliotsayes/mxbai-embed-large-v1-Q4_K_M-GGUF --hf-file mxbai-embed-large-v1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo elliotsayes/mxbai-embed-large-v1-Q4_K_M-GGUF --hf-file mxbai-embed-large-v1-q4_k_m.gguf -c 2048 ```