{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f398cb186c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677733649865574399, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAABMsVj78Q7A+MVSDviYflL5j+4i9bcc4vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVWBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIL7/TZAZkcUCUhpRSlIwBbJRNKQGMAXSUR0CiYQUg0TDgdX2UKGgGaAloD0MIvHoVGR1kb0CUhpRSlGgVTQ8BaBZHQKJhxYMfA9F1fZQoaAZoCWgPQwiFJoklJQxwQJSGlFKUaBVL/mgWR0CiYyb+kxh2dX2UKGgGaAloD0MI7E0MyUk/cECUhpRSlGgVTRsBaBZHQKJj8DQqqfh1fZQoaAZoCWgPQwgfaXBbWzZzQJSGlFKUaBVNKAFoFkdAomTTo6jnFHV9lChoBmgJaA9DCErusIlMNXNAlIaUUpRoFU1RAWgWR0CiZehKL877dX2UKGgGaAloD0MIZED2ejdqckCUhpRSlGgVTSkBaBZHQKJnadcSoOx1fZQoaAZoCWgPQwjnx19aVC5vQJSGlFKUaBVNGwFoFkdAomg/PLPldXV9lChoBmgJaA9DCOZ1xCEbBkZAlIaUUpRoFUvUaBZHQKJo2bZvkzZ1fZQoaAZoCWgPQwgFi8OZnx5xQJSGlFKUaBVNdwFoFkdAomq/nwG4Z3V9lChoBmgJaA9DCApl4esrpXBAlIaUUpRoFU0TAWgWR0Cia4WnKnvVdX2UKGgGaAloD0MImNwoslalbkCUhpRSlGgVS9hoFkdAomwe32EkB3V9lChoBmgJaA9DCH/4+e/Bn0lAlIaUUpRoFUvJaBZHQKJsqPOpsGh1fZQoaAZoCWgPQwiVtyOcljxwQJSGlFKUaBVL/GgWR0CibV6N2ki2dX2UKGgGaAloD0MIbjKqDKMKckCUhpRSlGgVTSABaBZHQKJu0EjgQ6J1fZQoaAZoCWgPQwiDGVOwxlNTQJSGlFKUaBVLt2gWR0Cib1HXNC7cdX2UKGgGaAloD0MItvgUAGMib0CUhpRSlGgVTS4BaBZHQKJwMZ/kNnZ1fZQoaAZoCWgPQwgeM1AZ/4ZyQJSGlFKUaBVNHQFoFkdAonGnTG5tnHV9lChoBmgJaA9DCH506spnNHNAlIaUUpRoFU3BAWgWR0Cic0pA+pwTdX2UKGgGaAloD0MINrBVgoVNckCUhpRSlGgVS+NoFkdAonQfR5TqB3V9lChoBmgJaA9DCIgTmE5rD25AlIaUUpRoFU0DAWgWR0CidS05EMLGdX2UKGgGaAloD0MI0QX1LXP4cECUhpRSlGgVTQsBaBZHQKJ3bqt5le51fZQoaAZoCWgPQwibyTfbnHVwQJSGlFKUaBVL9WgWR0CieH4xUNrkdX2UKGgGaAloD0MIrORjdwHtcECUhpRSlGgVTRoBaBZHQKJ5vzaK1oh1fZQoaAZoCWgPQwhfl+E/3WRxQJSGlFKUaBVNNAFoFkdAonsTc2zfJnV9lChoBmgJaA9DCJXTnpJzUkhAlIaUUpRoFUvXaBZHQKJ8jkLhJiB1fZQoaAZoCWgPQwi+E7NeTGByQJSGlFKUaBVNVAFoFkdAon2W9DhLoXV9lChoBmgJaA9DCIVALnEkmXFAlIaUUpRoFUvvaBZHQKJ+PxMFlkJ1fZQoaAZoCWgPQwjmeAWiJ+RxQJSGlFKUaBVNEQFoFkdAon+zqbBoEnV9lChoBmgJaA9DCINStHIvxXFAlIaUUpRoFUvRaBZHQKKAQMkQf6p1fZQoaAZoCWgPQwilarsJvg9wQJSGlFKUaBVNQQFoFkdAooFE5sCT2XV9lChoBmgJaA9DCCwN/KgGaHBAlIaUUpRoFU0IAWgWR0CiggToEB8ydX2UKGgGaAloD0MIy9jQzX5LcECUhpRSlGgVTQoBaBZHQKKDcBpYcNp1fZQoaAZoCWgPQwiXkXpP5bFwQJSGlFKUaBVL+GgWR0CihB5Jsfq5dX2UKGgGaAloD0MIWFUvv5MdcECUhpRSlGgVTQABaBZHQKKE2I42jwh1fZQoaAZoCWgPQwhSZK2h1FlSQJSGlFKUaBVL1mgWR0CihW5XEIgOdX2UKGgGaAloD0MIrFYm/NKPb0CUhpRSlGgVTRIBaBZHQKKG2ona37V1fZQoaAZoCWgPQwhJ8lzfBxhwQJSGlFKUaBVL/WgWR0Cih43rMTvidX2UKGgGaAloD0MITuyhfSz5cUCUhpRSlGgVTQ4BaBZHQKKIUIhQm/p1fZQoaAZoCWgPQwg6XKs9LKpwQJSGlFKUaBVL32gWR0CiiPTdUKiPdX2UKGgGaAloD0MIYoGv6BZCckCUhpRSlGgVS/xoFkdAoopJFEy+H3V9lChoBmgJaA9DCLdfPllxJHFAlIaUUpRoFUv/aBZHQKKLAqRU3n91fZQoaAZoCWgPQwgW+fVDbPtuQJSGlFKUaBVL9WgWR0Cii7MDOkckdX2UKGgGaAloD0MI+b8jKlShbUCUhpRSlGgVS+ZoFkdAooxVSS/0unV9lChoBmgJaA9DCPBsj97w1W5AlIaUUpRoFUvlaBZHQKKM/i704BF1fZQoaAZoCWgPQwgOgo5WdXNwQJSGlFKUaBVNCgFoFkdAoo5uIyj59HV9lChoBmgJaA9DCN9OIsK/5kdAlIaUUpRoFUuyaBZHQKKO5uJDVpd1fZQoaAZoCWgPQwgFTyFXqi9xQJSGlFKUaBVNCQFoFkdAoo+ojQiRn3V9lChoBmgJaA9DCH0/NV46sXFAlIaUUpRoFU08AWgWR0CikPTxoZhsdX2UKGgGaAloD0MIp7BSQUVVUkCUhpRSlGgVS71oFkdAopKIFxGUfXV9lChoBmgJaA9DCEDa/wCr/HBAlIaUUpRoFU0PAWgWR0Cik7ON5t3wdX2UKGgGaAloD0MIFhQGZRqzbECUhpRSlGgVTWoBaBZHQKKVX5rxiG51fZQoaAZoCWgPQwgLz0vFBsxwQJSGlFKUaBVNEgFoFkdAopebSApazXV9lChoBmgJaA9DCF9gVihS7m9AlIaUUpRoFU0DAWgWR0CimMBl+VkddX2UKGgGaAloD0MIAYkmUMT/b0CUhpRSlGgVTQ0BaBZHQKKZk94eLeh1fZQoaAZoCWgPQwgydsJL8ABxQJSGlFKUaBVL9mgWR0CimkN8uzyCdX2UKGgGaAloD0MIlC79S1LyUECUhpRSlGgVS71oFkdAoprJO+IuXnV9lChoBmgJaA9DCMN/uoECqFFAlIaUUpRoFUu3aBZHQKKb7tjTa0x1fZQoaAZoCWgPQwilvFZCdydxQJSGlFKUaBVNBQFoFkdAopyutr9ETnV9lChoBmgJaA9DCJPDJ51IXENAlIaUUpRoFUvPaBZHQKKdP003wTd1fZQoaAZoCWgPQwjNrKWANDVwQJSGlFKUaBVNBgFoFkdAop4Hk7wKB3V9lChoBmgJaA9DCJHtfD81Jk5AlIaUUpRoFUvFaBZHQKKfQCI1tO51fZQoaAZoCWgPQwikOEcd3UtwQJSGlFKUaBVL8GgWR0Cin/aEzwc6dX2UKGgGaAloD0MIyVaXU0K9cECUhpRSlGgVTREBaBZHQKKgvm6oVEd1fZQoaAZoCWgPQwjI0/IDV+FQQJSGlFKUaBVLrGgWR0CioTFD4QBgdX2UKGgGaAloD0MIRyBe1y8dUkCUhpRSlGgVS8loFkdAoqHD7O3UhHV9lChoBmgJaA9DCLfsEP+wmmxAlIaUUpRoFUvyaBZHQKKjFwH7gsN1fZQoaAZoCWgPQwiMhoxHqWBDQJSGlFKUaBVLuGgWR0Cio5mN70FsdX2UKGgGaAloD0MIpDmy8gvLcECUhpRSlGgVTSYBaBZHQKKkfemelKt1fZQoaAZoCWgPQwhjYYicPldxQJSGlFKUaBVNHwFoFkdAoqVVoQFs6HV9lChoBmgJaA9DCAq+afqsQXFAlIaUUpRoFU0UAWgWR0Cips9rwe/6dX2UKGgGaAloD0MIKgKc3sXhc0CUhpRSlGgVTUgBaBZHQKKn0HyEtd11fZQoaAZoCWgPQwigUE8fwe1yQJSGlFKUaBVNBAFoFkdAoqigxzq8lHV9lChoBmgJaA9DCJ1n7Es2tXJAlIaUUpRoFU1LAWgWR0Ciqj2G7BfsdX2UKGgGaAloD0MIPZrqyfyZUECUhpRSlGgVS9poFkdAoqrZE4Nqg3V9lChoBmgJaA9DCNl6hnAMNnJAlIaUUpRoFUv+aBZHQKKriUfxMFl1fZQoaAZoCWgPQwhdwwyNp31vQJSGlFKUaBVNGgFoFkdAoqxa4UeuFHV9lChoBmgJaA9DCD27fOtDk21AlIaUUpRoFU0eAWgWR0Cirip04iosdX2UKGgGaAloD0MI0vvG194hckCUhpRSlGgVTSgBaBZHQKKvVSzgMtt1fZQoaAZoCWgPQwgOFHgnX4xwQJSGlFKUaBVNCwFoFkdAorBccMmWt3V9lChoBmgJaA9DCO9wOzQs1mxAlIaUUpRoFUv/aBZHQKKxZjriVB51fZQoaAZoCWgPQwj3Bl+YjE1wQJSGlFKUaBVL6WgWR0Cis4JnQID6dX2UKGgGaAloD0MIDB6mfTM2cUCUhpRSlGgVS/RoFkdAorSPNu+AVnV9lChoBmgJaA9DCKIkJNL2W3JAlIaUUpRoFUvkaBZHQKK1gMDwH7h1fZQoaAZoCWgPQwiBe54/7ThyQJSGlFKUaBVNGwNoFkdAorjbviLl3nV9lChoBmgJaA9DCHwNwXGZtXFAlIaUUpRoFUv/aBZHQKK5klY2bXp1fZQoaAZoCWgPQwhvufqxic5wQJSGlFKUaBVNBQFoFkdAorpMZHd43XV9lChoBmgJaA9DCN0jm6vmR3BAlIaUUpRoFU0bAWgWR0Ciu7lRP421dX2UKGgGaAloD0MI2gQYlr9zcECUhpRSlGgVTQYBaBZHQKK8grvLHMl1fZQoaAZoCWgPQwicwHRaNwVjQJSGlFKUaBVN6ANoFkdAosBuO2iL23V9lChoBmgJaA9DCL02Gyux3XFAlIaUUpRoFU0GAWgWR0CiwTvPLPlddX2UKGgGaAloD0MIZY7lXbUHcECUhpRSlGgVTSIBaBZHQKLCDEAHVwx1fZQoaAZoCWgPQwgmNh/Xhs5TQJSGlFKUaBVLwWgWR0CiwzgWac7RdX2UKGgGaAloD0MIQKAzaVM1cECUhpRSlGgVS/9oFkdAosPugBcRlHV9lChoBmgJaA9DCOSfGcSHdW9AlIaUUpRoFU0jAWgWR0CixM6CUX54dX2UKGgGaAloD0MIkLsIUxSUckCUhpRSlGgVTX8BaBZHQKLF89bor4F1fZQoaAZoCWgPQwgSL0/nCtdxQJSGlFKUaBVNFAFoFkdAosdi/h2nsXV9lChoBmgJaA9DCLTpCOBm/HFAlIaUUpRoFU0SAWgWR0CiyCQD/2kBdX2UKGgGaAloD0MIOMDMdzDEcUCUhpRSlGgVTXEBaBZHQKLJSJWNm191fZQoaAZoCWgPQwjs+ZrlsqhhQJSGlFKUaBVN6ANoFkdAos5zCN0eVHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}