--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - sem_eval_2018_task_1 metrics: - f1 - accuracy model-index: - name: bert-finetuned-sem_eval-english results: - task: name: Text Classification type: text-classification dataset: name: sem_eval_2018_task_1 type: sem_eval_2018_task_1 config: subtask5.english split: validation args: subtask5.english metrics: - name: F1 type: f1 value: 0.7071713147410359 - name: Accuracy type: accuracy value: 0.2866817155756208 --- # bert-finetuned-sem_eval-english This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the sem_eval_2018_task_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3063 - F1: 0.7072 - Roc Auc: 0.7999 - Accuracy: 0.2867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 428 | 0.3278 | 0.6765 | 0.7759 | 0.2641 | | 0.3858 | 2.0 | 856 | 0.3032 | 0.6879 | 0.7804 | 0.2743 | | 0.2836 | 3.0 | 1284 | 0.3017 | 0.7033 | 0.7957 | 0.2935 | | 0.2446 | 4.0 | 1712 | 0.3060 | 0.7037 | 0.7970 | 0.2799 | | 0.2225 | 5.0 | 2140 | 0.3063 | 0.7072 | 0.7999 | 0.2867 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.1