--- license: mit pipeline_tag: text-generation language: - en - ru base_model: - Qwen/Qwen2.5-7B-Instruct tags: - qwen2.5 --- ### theqwenmoe - 18.3B parametrs - English & Russian - Math & Logic - Code: Python, Javascript, Java, PHP, C++, C#, ... This is experimental model. Can be bugs and various problems. Made with mergekit and unsloth apps by ehristoforu. Code usage example: ```py from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "ehristoforu/theqwenmoe" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ```