from enum import Enum from typing import Any class StableDiffusionVersion(Enum): """The version family of stable diffusion model.""" UNKNOWN = 0 SD1x = 1 SD2x = 2 SDXL = 3 @staticmethod def detect_from_model_name(model_name: str) -> "StableDiffusionVersion": """Based on the model name provided, guess what stable diffusion version it is. This might not be accurate without actually inspect the file content. """ if any(f"sd{v}" in model_name.lower() for v in ("14", "15", "16")): return StableDiffusionVersion.SD1x if "sd21" in model_name or "2.1" in model_name: return StableDiffusionVersion.SD2x if "xl" in model_name.lower(): return StableDiffusionVersion.SDXL return StableDiffusionVersion.UNKNOWN def encoder_block_num(self) -> int: if self in (StableDiffusionVersion.SD1x, StableDiffusionVersion.SD2x, StableDiffusionVersion.UNKNOWN): return 12 else: return 9 # SDXL def controlnet_layer_num(self) -> int: return self.encoder_block_num() + 1 def is_compatible_with(self, other: "StableDiffusionVersion") -> bool: """ Incompatible only when one of version is SDXL and other is not. """ return ( any(v == StableDiffusionVersion.UNKNOWN for v in [self, other]) or sum(v == StableDiffusionVersion.SDXL for v in [self, other]) != 1 ) class ControlModelType(Enum): """ The type of Control Models (supported or not). """ ControlNet = "ControlNet, Lvmin Zhang" T2I_Adapter = "T2I_Adapter, Chong Mou" T2I_StyleAdapter = "T2I_StyleAdapter, Chong Mou" T2I_CoAdapter = "T2I_CoAdapter, Chong Mou" MasaCtrl = "MasaCtrl, Mingdeng Cao" GLIGEN = "GLIGEN, Yuheng Li" AttentionInjection = "AttentionInjection, Lvmin Zhang" # A simple attention injection written by Lvmin StableSR = "StableSR, Jianyi Wang" PromptDiffusion = "PromptDiffusion, Zhendong Wang" ControlLoRA = "ControlLoRA, Wu Hecong" ReVision = "ReVision, Stability" IPAdapter = "IPAdapter, Hu Ye" Controlllite = "Controlllite, Kohya" InstantID = "InstantID, Qixun Wang" def is_controlnet(self) -> bool: """Returns whether the control model should be treated as ControlNet.""" return self in ( ControlModelType.ControlNet, ControlModelType.ControlLoRA, ControlModelType.InstantID, ) def allow_context_sharing(self) -> bool: """Returns whether this control model type allows the same PlugableControlModel object map to multiple ControlNetUnit. Both IPAdapter and Controlllite have unit specific input (clip/image) stored on the model object during inference. Sharing the context means that the input set earlier gets lost. """ return self not in ( ControlModelType.IPAdapter, ControlModelType.Controlllite, ) # Written by Lvmin class AutoMachine(Enum): """ Lvmin's algorithm for Attention/AdaIn AutoMachine States. """ Read = "Read" Write = "Write" StyleAlign = "StyleAlign" class HiResFixOption(Enum): BOTH = "Both" LOW_RES_ONLY = "Low res only" HIGH_RES_ONLY = "High res only" @staticmethod def from_value(value: Any) -> "HiResFixOption": if isinstance(value, str) and value.startswith("HiResFixOption."): _, field = value.split(".") return getattr(HiResFixOption, field) if isinstance(value, str): return HiResFixOption(value) elif isinstance(value, int): return [x for x in HiResFixOption][value] else: assert isinstance(value, HiResFixOption) return value class InputMode(Enum): # Single image to a single ControlNet unit. SIMPLE = "simple" # Input is a directory. N generations. Each generation takes 1 input image # from the directory. BATCH = "batch" # Input is a directory. 1 generation. Each generation takes N input image # from the directory. MERGE = "merge"