# klue-roberta-base-kornli * This model trained with Korean dataset. * Input premise sentence and hypothesis sentence. * You can use English, but don't expect accuracy. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. klue-roberta-base-kornli DEMO: [Ainize DEMO](https://main-klue-roberta-base-kornli-ehdwns1516.endpoint.ainize.ai/) klue-roberta-base-kornli API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/klue-roberta-base_kornli) ## Overview Language model: [klue/roberta-base](https://huggingface.co/klue/roberta-base) Language: Korean Training data: [kakaobrain KorNLI](https://github.com/kakaobrain/KorNLUDatasets/tree/master/KorNLI) Eval data: [kakaobrain KorNLI](https://github.com/kakaobrain/KorNLUDatasets/tree/master/KorNLI) Code: See [Ainize Workspace](https://a966119d3186.ngrok.io/notebooks/DJ/KLUE-NLI/klue-roberta-base-kornli.ipynb) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/klue-roberta-base-kornli") classifier = pipeline( "text-classification", model="ehdwns1516/klue-roberta-base-kornli", return_all_scores=True, ) premise = "your premise" hypothesis = "your hypothesis" result = dict() result[0] = classifier(premise + tokenizer.sep_token + hypothesis)[0] ```