# gpt2_review_star3 * This model has been trained as a review_body dataset with a star of 3 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). * Input text what you want to generate review. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. review generator DEMO: [Ainize DEMO](https://main-review-generator-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/review_generator) ## Model links for each 1 to 5 star * [ehdwns1516/gpt2_review_star1](https://huggingface.co/ehdwns1516/gpt2_review_star1) * [ehdwns1516/gpt2_review_star2](https://huggingface.co/ehdwns1516/gpt2_review_star2) * [ehdwns1516/gpt2_review_star3](https://huggingface.co/ehdwns1516/gpt2_review_star3) * [ehdwns1516/gpt2_review_star4](https://huggingface.co/ehdwns1516/gpt2_review_star4) * [ehdwns1516/gpt2_review_star5](https://huggingface.co/ehdwns1516/gpt2_review_star5) ## Overview Language model: [gpt2](https://huggingface.co/gpt2) Language: English Training data: review_body dataset with a star of 3 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/gpt2_review_fine-tunning_note) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/gpt2_review_star3") model = AutoModelWithLMHead.from_pretrained("ehdwns1516/gpt2_review_star3") generator = pipeline( "text-generation", model="ehdwns1516/gpt2_review_star3", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = generator(context)[0] ```