--- library_name: transformers license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5067 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0433 | 1.0 | 225 | 0.9966 | 0.67 | | 0.1742 | 2.0 | 450 | 1.1221 | 0.73 | | 0.8632 | 3.0 | 675 | 0.9182 | 0.79 | | 0.0054 | 4.0 | 900 | 0.9570 | 0.82 | | 0.0002 | 5.0 | 1125 | 0.9579 | 0.8 | | 0.003 | 6.0 | 1350 | 0.5792 | 0.86 | | 0.0001 | 7.0 | 1575 | 0.5325 | 0.89 | | 0.0001 | 8.0 | 1800 | 0.5337 | 0.9 | | 0.0001 | 9.0 | 2025 | 0.5120 | 0.89 | | 0.0001 | 10.0 | 2250 | 0.5067 | 0.88 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0