--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6141 - Accuracy: 0.8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1976 | 0.99 | 56 | 2.1232 | 0.36 | | 1.5738 | 2.0 | 113 | 1.4564 | 0.68 | | 1.2321 | 2.99 | 169 | 1.1535 | 0.74 | | 0.9847 | 4.0 | 226 | 0.9799 | 0.74 | | 0.8254 | 4.99 | 282 | 0.8700 | 0.78 | | 0.6017 | 6.0 | 339 | 0.8466 | 0.74 | | 0.631 | 6.99 | 395 | 0.6828 | 0.8 | | 0.4887 | 8.0 | 452 | 0.6360 | 0.81 | | 0.3798 | 8.99 | 508 | 0.6158 | 0.82 | | 0.2427 | 10.0 | 565 | 0.6163 | 0.78 | | 0.2077 | 10.99 | 621 | 0.6197 | 0.8 | | 0.1506 | 12.0 | 678 | 0.5992 | 0.8 | | 0.1467 | 12.99 | 734 | 0.6003 | 0.8 | | 0.1967 | 13.88 | 784 | 0.6141 | 0.8 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3