eduiqe commited on
Commit
8a8e7da
1 Parent(s): b9cd07c

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.92 +/- 0.47
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8103d5b6b7f7b19b3f99e279e8aa55217ec4d25cb35b971d60c1033ed7947511
3
+ size 108016
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2bfa443a60>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f2bfa444940>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679204745122040877,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAU4/UPscGXzwppR0/U4/UPscGXzwppR0/U4/UPscGXzwppR0/U4/UPscGXzwppR0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/SGlvi0pYT8nkbi/NvTKv2PkVL8NwM4+NP+0v5chfz+98m4/D660P6j1lb/B+LI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABTj9Q+xwZfPCmlHT9QuK67bu2qurHkc7tTj9Q+xwZfPCmlHT9QuK67bu2qurHkc7tTj9Q+xwZfPCmlHT9QuK67bu2qurHkc7tTj9Q+xwZfPCmlHT9QuK67bu2qurHkc7uUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.41515598 0.01361246 0.6158014 ]\n [0.41515598 0.01361246 0.6158014 ]\n [0.41515598 0.01361246 0.6158014 ]\n [0.41515598 0.01361246 0.6158014 ]]",
60
+ "desired_goal": "[[-0.32252494 0.87953454 -1.4419297 ]\n [-1.5855777 -0.8316099 0.40380898]\n [-1.4140382 0.9966063 0.9333914 ]\n [ 1.4115618 -1.1715593 1.3982164 ]]",
61
+ "observation": "[[ 0.41515598 0.01361246 0.6158014 -0.00533203 -0.00130407 -0.00372152]\n [ 0.41515598 0.01361246 0.6158014 -0.00533203 -0.00130407 -0.00372152]\n [ 0.41515598 0.01361246 0.6158014 -0.00533203 -0.00130407 -0.00372152]\n [ 0.41515598 0.01361246 0.6158014 -0.00533203 -0.00130407 -0.00372152]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIG/9PWVhA75LiXU+InasPZmz4r0k+JA+yl/uPXt2Aj6EvHQ++1EbvVtjBj2gflw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.12374711 -0.12830122 0.23978154]\n [ 0.0842097 -0.11069412 0.28314316]\n [ 0.11639364 0.12740509 0.23900038]\n [-0.03791998 0.0328096 0.21532679]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1T4djxmo/r+UhpRSlIwBbJRLMowBdJRHQKeZP1HOKO11fZQoaAZoCWgPQwieB3dn7fYFwJSGlFKUaBVLMmgWR0CnmN+e4Cp4dX2UKGgGaAloD0MIou4DkNqkDsCUhpRSlGgVSzJoFkdAp5iAwEhaDHV9lChoBmgJaA9DCIp2FVJ+0gnAlIaUUpRoFUsyaBZHQKeXoesgdOt1fZQoaAZoCWgPQwhXsfhNYeX2v5SGlFKUaBVLMmgWR0Cnmjy5Zr57dX2UKGgGaAloD0MIJh5QNuUqCMCUhpRSlGgVSzJoFkdAp5ncz0pVj3V9lChoBmgJaA9DCKDejJqv8gXAlIaUUpRoFUsyaBZHQKeZfe8f3ex1fZQoaAZoCWgPQwgJ/yJozEQFwJSGlFKUaBVLMmgWR0CnmJ8XWOIZdX2UKGgGaAloD0MItCCU93G0/r+UhpRSlGgVSzJoFkdAp5szvoePrHV9lChoBmgJaA9DCB6Jl6dzBQvAlIaUUpRoFUsyaBZHQKea0/zJ6pp1fZQoaAZoCWgPQwh3hNOCF30MwJSGlFKUaBVLMmgWR0CnmnS5AhStdX2UKGgGaAloD0MIaW/whcl0AsCUhpRSlGgVSzJoFkdAp5mV4eLeh3V9lChoBmgJaA9DCFcJFocznwfAlIaUUpRoFUsyaBZHQKecNXeWOZN1fZQoaAZoCWgPQwirPldbsb/5v5SGlFKUaBVLMmgWR0Cnm9WYOUdJdX2UKGgGaAloD0MIgnUcP1RaA8CUhpRSlGgVSzJoFkdAp5t2lGgBcXV9lChoBmgJaA9DCNffEoB/ig7AlIaUUpRoFUsyaBZHQKeal9hqj8F1fZQoaAZoCWgPQwiBWaFI9/MHwJSGlFKUaBVLMmgWR0CnnUmBWgezdX2UKGgGaAloD0MIEVZjCWtjBcCUhpRSlGgVSzJoFkdAp5zp06o2oHV9lChoBmgJaA9DCG9FYoIangXAlIaUUpRoFUsyaBZHQKeciuTzNEB1fZQoaAZoCWgPQwgoYhHDDgMBwJSGlFKUaBVLMmgWR0Cnm6v8IiTudX2UKGgGaAloD0MIw7ZFmQ1yAcCUhpRSlGgVSzJoFkdAp55eukk8inV9lChoBmgJaA9DCDrNAu0OqQHAlIaUUpRoFUsyaBZHQKed/uw5eZ51fZQoaAZoCWgPQwgllL4Qcp75v5SGlFKUaBVLMmgWR0CnnZ/M4cWCdX2UKGgGaAloD0MIYwgAjj07AMCUhpRSlGgVSzJoFkdAp5zA4hllLHV9lChoBmgJaA9DCEEtBg/TXgPAlIaUUpRoFUsyaBZHQKefzW0Z3s51fZQoaAZoCWgPQwj2e2KdKt/8v5SGlFKUaBVLMmgWR0Cnn27aqS5idX2UKGgGaAloD0MIhGbXvRWJB8CUhpRSlGgVSzJoFkdAp58QXQ+lj3V9lChoBmgJaA9DCK7yBMJOEQfAlIaUUpRoFUsyaBZHQKeeMlabF0h1fZQoaAZoCWgPQwiCrRIsDkcCwJSGlFKUaBVLMmgWR0CnoYnE/B3zdX2UKGgGaAloD0MIcCNli6TdCMCUhpRSlGgVSzJoFkdAp6EqeCkGinV9lChoBmgJaA9DCFWFBmLZTA3AlIaUUpRoFUsyaBZHQKegzEd/8VJ1fZQoaAZoCWgPQwh90LNZ9VkDwJSGlFKUaBVLMmgWR0Cnn+4Z/CqIdX2UKGgGaAloD0MIOuenOA5MEMCUhpRSlGgVSzJoFkdAp6NKA8Swn3V9lChoBmgJaA9DCHEd44qL4wfAlIaUUpRoFUsyaBZHQKei60qpcX51fZQoaAZoCWgPQwhiD+1jBf8BwJSGlFKUaBVLMmgWR0Cnoo176YVqdX2UKGgGaAloD0MIrJFdaRlp97+UhpRSlGgVSzJoFkdAp6GvO8kD6nV9lChoBmgJaA9DCMUbmUf+UBDAlIaUUpRoFUsyaBZHQKelMgctGut1fZQoaAZoCWgPQwiXWBmNfB78v5SGlFKUaBVLMmgWR0CnpNM5GSZCdX2UKGgGaAloD0MIIAiQoWNnBMCUhpRSlGgVSzJoFkdAp6R1WCEpRXV9lChoBmgJaA9DCMFWCRaHcwvAlIaUUpRoFUsyaBZHQKejl2nKnvV1fZQoaAZoCWgPQwhO8iN+xboFwJSGlFKUaBVLMmgWR0CnpxKuSwGGdX2UKGgGaAloD0MIw9Zs5SW/+r+UhpRSlGgVSzJoFkdAp6az4k/r0XV9lChoBmgJaA9DCPUPIhlyXBDAlIaUUpRoFUsyaBZHQKemVgCOmzl1fZQoaAZoCWgPQwhoI9dNKU8HwJSGlFKUaBVLMmgWR0CnpXgQHzH0dX2UKGgGaAloD0MInBTmPc50+b+UhpRSlGgVSzJoFkdAp6kEfigkC3V9lChoBmgJaA9DCFyufmySX/u/lIaUUpRoFUsyaBZHQKeopfj0cwR1fZQoaAZoCWgPQwiaP6a1aQwPwJSGlFKUaBVLMmgWR0CnqEhTn7pFdX2UKGgGaAloD0MI66wW2GOiA8CUhpRSlGgVSzJoFkdAp6dqtFKChHV9lChoBmgJaA9DCDDUYYVbvgXAlIaUUpRoFUsyaBZHQKeqY4smOVB1fZQoaAZoCWgPQwiOPuYDAl0FwJSGlFKUaBVLMmgWR0CnqgPU8V59dX2UKGgGaAloD0MILzTXaaTlDMCUhpRSlGgVSzJoFkdAp6mk3qAz6HV9lChoBmgJaA9DCCVZh6Or9AvAlIaUUpRoFUsyaBZHQKeoxh+fAbh1fZQoaAZoCWgPQwjEzalkACgBwJSGlFKUaBVLMmgWR0Cnq3sDnvDxdX2UKGgGaAloD0MIPx767lYWBcCUhpRSlGgVSzJoFkdAp6sbaK1og3V9lChoBmgJaA9DCBcP7zmw/ALAlIaUUpRoFUsyaBZHQKeqvGWldkd1fZQoaAZoCWgPQwj7JHfYROYOwJSGlFKUaBVLMmgWR0Cnqd2Kl54XdX2UKGgGaAloD0MIuJOI8C9CCcCUhpRSlGgVSzJoFkdAp6yQtcv/R3V9lChoBmgJaA9DCOqwwi0fWRPAlIaUUpRoFUsyaBZHQKesMRradtl1fZQoaAZoCWgPQwg+PiE7bwMFwJSGlFKUaBVLMmgWR0Cnq9IInjQzdX2UKGgGaAloD0MIxZEHIovUC8CUhpRSlGgVSzJoFkdAp6rzJyQxOHV9lChoBmgJaA9DCKuTMxR3PAzAlIaUUpRoFUsyaBZHQKetqhxo7FN1fZQoaAZoCWgPQwi05PG0/CADwJSGlFKUaBVLMmgWR0CnrUqArhBJdX2UKGgGaAloD0MIWI6QgTy7BcCUhpRSlGgVSzJoFkdAp6zrjNpudnV9lChoBmgJaA9DCJIDdjV5ygTAlIaUUpRoFUsyaBZHQKesDKDCgsd1fZQoaAZoCWgPQwikOEcdHdcBwJSGlFKUaBVLMmgWR0CnrsUeU6gedX2UKGgGaAloD0MIy5wui4kNCcCUhpRSlGgVSzJoFkdAp65lY+0PYnV9lChoBmgJaA9DCD8Z48PsRQbAlIaUUpRoFUsyaBZHQKeuBn27FsJ1fZQoaAZoCWgPQwj6YBkbuhkLwJSGlFKUaBVLMmgWR0CnrSe7UXpGdX2UKGgGaAloD0MIp+uJrgvfBcCUhpRSlGgVSzJoFkdAp6/flQuVX3V9lChoBmgJaA9DCEfLgR5qWwHAlIaUUpRoFUsyaBZHQKevgB8x9G91fZQoaAZoCWgPQwgv98lRgGgEwJSGlFKUaBVLMmgWR0CnryEGRmsedX2UKGgGaAloD0MI88gfDDyXCsCUhpRSlGgVSzJoFkdAp65CWcBltnV9lChoBmgJaA9DCPGcLSC0XgfAlIaUUpRoFUsyaBZHQKew7Gb1AZ91fZQoaAZoCWgPQwguG53zUxwJwJSGlFKUaBVLMmgWR0CnsIzVMEiddX2UKGgGaAloD0MIHAk02NSZBsCUhpRSlGgVSzJoFkdAp7Atz8xbjnV9lChoBmgJaA9DCPA0mfG2kgbAlIaUUpRoFUsyaBZHQKevTusLfDV1fZQoaAZoCWgPQwiw/s9hvhwFwJSGlFKUaBVLMmgWR0Cnsf6RISUUdX2UKGgGaAloD0MIOzYC8bqeBsCUhpRSlGgVSzJoFkdAp7Ge2Xsw+XV9lChoBmgJaA9DCA+1bRgFwQTAlIaUUpRoFUsyaBZHQKexP9G7SRd1fZQoaAZoCWgPQwgAH7x2aQMEwJSGlFKUaBVLMmgWR0CnsGEfDDTCdX2UKGgGaAloD0MI85GU9DDUCsCUhpRSlGgVSzJoFkdAp7MUUCaJAXV9lChoBmgJaA9DCOurqwK1+A7AlIaUUpRoFUsyaBZHQKeytKnNxER1fZQoaAZoCWgPQwgCEeLK2dsIwJSGlFKUaBVLMmgWR0CnslXT/hl2dX2UKGgGaAloD0MIDhE3p5KBAcCUhpRSlGgVSzJoFkdAp7F3BtUGV3V9lChoBmgJaA9DCPWDukih7AXAlIaUUpRoFUsyaBZHQKe0LDxb0OF1fZQoaAZoCWgPQwjGi4UhctoKwJSGlFKUaBVLMmgWR0Cns8yEDhcadX2UKGgGaAloD0MI1V3ZBYOr/b+UhpRSlGgVSzJoFkdAp7Ntm8M/hXV9lChoBmgJaA9DCHv5nSYzfg3AlIaUUpRoFUsyaBZHQKeyjuIAOrh1fZQoaAZoCWgPQwiazeMwmN8CwJSGlFKUaBVLMmgWR0CntUrw4KhMdX2UKGgGaAloD0MIUTHO34TiC8CUhpRSlGgVSzJoFkdAp7TrHp8neHV9lChoBmgJaA9DCAXdXtIYLQrAlIaUUpRoFUsyaBZHQKe0jB+nZTR1fZQoaAZoCWgPQwjFrYIY6BoNwJSGlFKUaBVLMmgWR0Cns61YhdMTdX2UKGgGaAloD0MIxsN7DiynAcCUhpRSlGgVSzJoFkdAp7ZhF/hESnV9lChoBmgJaA9DCAwEATJ0LAPAlIaUUpRoFUsyaBZHQKe2AXVsk6d1fZQoaAZoCWgPQwjWAntMpHQPwJSGlFKUaBVLMmgWR0CntaKc/dIodX2UKGgGaAloD0MIM2spIO0fBMCUhpRSlGgVSzJoFkdAp7TD1EmY0HV9lChoBmgJaA9DCI+JlGbzeAnAlIaUUpRoFUsyaBZHQKe3k5MDfWN1fZQoaAZoCWgPQwh8KxIT1DAEwJSGlFKUaBVLMmgWR0CntzQ3o9s8dX2UKGgGaAloD0MIRuuoaoLICsCUhpRSlGgVSzJoFkdAp7bVqtYCAHV9lChoBmgJaA9DCARXeQJhBwDAlIaUUpRoFUsyaBZHQKe19y/bj951ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d48fdc2fde628210cc81479f13f41f312320db2b54f35f083348a0f49f34d232
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dce677303bba6d1aa94c0cf84100667860dc3c0cdf785095a9dbd7f57732bf59
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2bfa443a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2bfa444940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679204745122040877, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAU4/UPscGXzwppR0/U4/UPscGXzwppR0/U4/UPscGXzwppR0/U4/UPscGXzwppR0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/SGlvi0pYT8nkbi/NvTKv2PkVL8NwM4+NP+0v5chfz+98m4/D660P6j1lb/B+LI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABTj9Q+xwZfPCmlHT9QuK67bu2qurHkc7tTj9Q+xwZfPCmlHT9QuK67bu2qurHkc7tTj9Q+xwZfPCmlHT9QuK67bu2qurHkc7tTj9Q+xwZfPCmlHT9QuK67bu2qurHkc7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41515598 0.01361246 0.6158014 ]\n [0.41515598 0.01361246 0.6158014 ]\n [0.41515598 0.01361246 0.6158014 ]\n [0.41515598 0.01361246 0.6158014 ]]", "desired_goal": "[[-0.32252494 0.87953454 -1.4419297 ]\n [-1.5855777 -0.8316099 0.40380898]\n [-1.4140382 0.9966063 0.9333914 ]\n [ 1.4115618 -1.1715593 1.3982164 ]]", "observation": "[[ 0.41515598 0.01361246 0.6158014 -0.00533203 -0.00130407 -0.00372152]\n [ 0.41515598 0.01361246 0.6158014 -0.00533203 -0.00130407 -0.00372152]\n [ 0.41515598 0.01361246 0.6158014 -0.00533203 -0.00130407 -0.00372152]\n [ 0.41515598 0.01361246 0.6158014 -0.00533203 -0.00130407 -0.00372152]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIG/9PWVhA75LiXU+InasPZmz4r0k+JA+yl/uPXt2Aj6EvHQ++1EbvVtjBj2gflw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12374711 -0.12830122 0.23978154]\n [ 0.0842097 -0.11069412 0.28314316]\n [ 0.11639364 0.12740509 0.23900038]\n [-0.03791998 0.0328096 0.21532679]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1T4djxmo/r+UhpRSlIwBbJRLMowBdJRHQKeZP1HOKO11fZQoaAZoCWgPQwieB3dn7fYFwJSGlFKUaBVLMmgWR0CnmN+e4Cp4dX2UKGgGaAloD0MIou4DkNqkDsCUhpRSlGgVSzJoFkdAp5iAwEhaDHV9lChoBmgJaA9DCIp2FVJ+0gnAlIaUUpRoFUsyaBZHQKeXoesgdOt1fZQoaAZoCWgPQwhXsfhNYeX2v5SGlFKUaBVLMmgWR0Cnmjy5Zr57dX2UKGgGaAloD0MIJh5QNuUqCMCUhpRSlGgVSzJoFkdAp5ncz0pVj3V9lChoBmgJaA9DCKDejJqv8gXAlIaUUpRoFUsyaBZHQKeZfe8f3ex1fZQoaAZoCWgPQwgJ/yJozEQFwJSGlFKUaBVLMmgWR0CnmJ8XWOIZdX2UKGgGaAloD0MItCCU93G0/r+UhpRSlGgVSzJoFkdAp5szvoePrHV9lChoBmgJaA9DCB6Jl6dzBQvAlIaUUpRoFUsyaBZHQKea0/zJ6pp1fZQoaAZoCWgPQwh3hNOCF30MwJSGlFKUaBVLMmgWR0CnmnS5AhStdX2UKGgGaAloD0MIaW/whcl0AsCUhpRSlGgVSzJoFkdAp5mV4eLeh3V9lChoBmgJaA9DCFcJFocznwfAlIaUUpRoFUsyaBZHQKecNXeWOZN1fZQoaAZoCWgPQwirPldbsb/5v5SGlFKUaBVLMmgWR0Cnm9WYOUdJdX2UKGgGaAloD0MIgnUcP1RaA8CUhpRSlGgVSzJoFkdAp5t2lGgBcXV9lChoBmgJaA9DCNffEoB/ig7AlIaUUpRoFUsyaBZHQKeal9hqj8F1fZQoaAZoCWgPQwiBWaFI9/MHwJSGlFKUaBVLMmgWR0CnnUmBWgezdX2UKGgGaAloD0MIEVZjCWtjBcCUhpRSlGgVSzJoFkdAp5zp06o2oHV9lChoBmgJaA9DCG9FYoIangXAlIaUUpRoFUsyaBZHQKeciuTzNEB1fZQoaAZoCWgPQwgoYhHDDgMBwJSGlFKUaBVLMmgWR0Cnm6v8IiTudX2UKGgGaAloD0MIw7ZFmQ1yAcCUhpRSlGgVSzJoFkdAp55eukk8inV9lChoBmgJaA9DCDrNAu0OqQHAlIaUUpRoFUsyaBZHQKed/uw5eZ51fZQoaAZoCWgPQwgllL4Qcp75v5SGlFKUaBVLMmgWR0CnnZ/M4cWCdX2UKGgGaAloD0MIYwgAjj07AMCUhpRSlGgVSzJoFkdAp5zA4hllLHV9lChoBmgJaA9DCEEtBg/TXgPAlIaUUpRoFUsyaBZHQKefzW0Z3s51fZQoaAZoCWgPQwj2e2KdKt/8v5SGlFKUaBVLMmgWR0Cnn27aqS5idX2UKGgGaAloD0MIhGbXvRWJB8CUhpRSlGgVSzJoFkdAp58QXQ+lj3V9lChoBmgJaA9DCK7yBMJOEQfAlIaUUpRoFUsyaBZHQKeeMlabF0h1fZQoaAZoCWgPQwiCrRIsDkcCwJSGlFKUaBVLMmgWR0CnoYnE/B3zdX2UKGgGaAloD0MIcCNli6TdCMCUhpRSlGgVSzJoFkdAp6EqeCkGinV9lChoBmgJaA9DCFWFBmLZTA3AlIaUUpRoFUsyaBZHQKegzEd/8VJ1fZQoaAZoCWgPQwh90LNZ9VkDwJSGlFKUaBVLMmgWR0Cnn+4Z/CqIdX2UKGgGaAloD0MIOuenOA5MEMCUhpRSlGgVSzJoFkdAp6NKA8Swn3V9lChoBmgJaA9DCHEd44qL4wfAlIaUUpRoFUsyaBZHQKei60qpcX51fZQoaAZoCWgPQwhiD+1jBf8BwJSGlFKUaBVLMmgWR0Cnoo176YVqdX2UKGgGaAloD0MIrJFdaRlp97+UhpRSlGgVSzJoFkdAp6GvO8kD6nV9lChoBmgJaA9DCMUbmUf+UBDAlIaUUpRoFUsyaBZHQKelMgctGut1fZQoaAZoCWgPQwiXWBmNfB78v5SGlFKUaBVLMmgWR0CnpNM5GSZCdX2UKGgGaAloD0MIIAiQoWNnBMCUhpRSlGgVSzJoFkdAp6R1WCEpRXV9lChoBmgJaA9DCMFWCRaHcwvAlIaUUpRoFUsyaBZHQKejl2nKnvV1fZQoaAZoCWgPQwhO8iN+xboFwJSGlFKUaBVLMmgWR0CnpxKuSwGGdX2UKGgGaAloD0MIw9Zs5SW/+r+UhpRSlGgVSzJoFkdAp6az4k/r0XV9lChoBmgJaA9DCPUPIhlyXBDAlIaUUpRoFUsyaBZHQKemVgCOmzl1fZQoaAZoCWgPQwhoI9dNKU8HwJSGlFKUaBVLMmgWR0CnpXgQHzH0dX2UKGgGaAloD0MInBTmPc50+b+UhpRSlGgVSzJoFkdAp6kEfigkC3V9lChoBmgJaA9DCFyufmySX/u/lIaUUpRoFUsyaBZHQKeopfj0cwR1fZQoaAZoCWgPQwiaP6a1aQwPwJSGlFKUaBVLMmgWR0CnqEhTn7pFdX2UKGgGaAloD0MI66wW2GOiA8CUhpRSlGgVSzJoFkdAp6dqtFKChHV9lChoBmgJaA9DCDDUYYVbvgXAlIaUUpRoFUsyaBZHQKeqY4smOVB1fZQoaAZoCWgPQwiOPuYDAl0FwJSGlFKUaBVLMmgWR0CnqgPU8V59dX2UKGgGaAloD0MILzTXaaTlDMCUhpRSlGgVSzJoFkdAp6mk3qAz6HV9lChoBmgJaA9DCCVZh6Or9AvAlIaUUpRoFUsyaBZHQKeoxh+fAbh1fZQoaAZoCWgPQwjEzalkACgBwJSGlFKUaBVLMmgWR0Cnq3sDnvDxdX2UKGgGaAloD0MIPx767lYWBcCUhpRSlGgVSzJoFkdAp6sbaK1og3V9lChoBmgJaA9DCBcP7zmw/ALAlIaUUpRoFUsyaBZHQKeqvGWldkd1fZQoaAZoCWgPQwj7JHfYROYOwJSGlFKUaBVLMmgWR0Cnqd2Kl54XdX2UKGgGaAloD0MIuJOI8C9CCcCUhpRSlGgVSzJoFkdAp6yQtcv/R3V9lChoBmgJaA9DCOqwwi0fWRPAlIaUUpRoFUsyaBZHQKesMRradtl1fZQoaAZoCWgPQwg+PiE7bwMFwJSGlFKUaBVLMmgWR0Cnq9IInjQzdX2UKGgGaAloD0MIxZEHIovUC8CUhpRSlGgVSzJoFkdAp6rzJyQxOHV9lChoBmgJaA9DCKuTMxR3PAzAlIaUUpRoFUsyaBZHQKetqhxo7FN1fZQoaAZoCWgPQwi05PG0/CADwJSGlFKUaBVLMmgWR0CnrUqArhBJdX2UKGgGaAloD0MIWI6QgTy7BcCUhpRSlGgVSzJoFkdAp6zrjNpudnV9lChoBmgJaA9DCJIDdjV5ygTAlIaUUpRoFUsyaBZHQKesDKDCgsd1fZQoaAZoCWgPQwikOEcdHdcBwJSGlFKUaBVLMmgWR0CnrsUeU6gedX2UKGgGaAloD0MIy5wui4kNCcCUhpRSlGgVSzJoFkdAp65lY+0PYnV9lChoBmgJaA9DCD8Z48PsRQbAlIaUUpRoFUsyaBZHQKeuBn27FsJ1fZQoaAZoCWgPQwj6YBkbuhkLwJSGlFKUaBVLMmgWR0CnrSe7UXpGdX2UKGgGaAloD0MIp+uJrgvfBcCUhpRSlGgVSzJoFkdAp6/flQuVX3V9lChoBmgJaA9DCEfLgR5qWwHAlIaUUpRoFUsyaBZHQKevgB8x9G91fZQoaAZoCWgPQwgv98lRgGgEwJSGlFKUaBVLMmgWR0CnryEGRmsedX2UKGgGaAloD0MI88gfDDyXCsCUhpRSlGgVSzJoFkdAp65CWcBltnV9lChoBmgJaA9DCPGcLSC0XgfAlIaUUpRoFUsyaBZHQKew7Gb1AZ91fZQoaAZoCWgPQwguG53zUxwJwJSGlFKUaBVLMmgWR0CnsIzVMEiddX2UKGgGaAloD0MIHAk02NSZBsCUhpRSlGgVSzJoFkdAp7Atz8xbjnV9lChoBmgJaA9DCPA0mfG2kgbAlIaUUpRoFUsyaBZHQKevTusLfDV1fZQoaAZoCWgPQwiw/s9hvhwFwJSGlFKUaBVLMmgWR0Cnsf6RISUUdX2UKGgGaAloD0MIOzYC8bqeBsCUhpRSlGgVSzJoFkdAp7Ge2Xsw+XV9lChoBmgJaA9DCA+1bRgFwQTAlIaUUpRoFUsyaBZHQKexP9G7SRd1fZQoaAZoCWgPQwgAH7x2aQMEwJSGlFKUaBVLMmgWR0CnsGEfDDTCdX2UKGgGaAloD0MI85GU9DDUCsCUhpRSlGgVSzJoFkdAp7MUUCaJAXV9lChoBmgJaA9DCOurqwK1+A7AlIaUUpRoFUsyaBZHQKeytKnNxER1fZQoaAZoCWgPQwgCEeLK2dsIwJSGlFKUaBVLMmgWR0CnslXT/hl2dX2UKGgGaAloD0MIDhE3p5KBAcCUhpRSlGgVSzJoFkdAp7F3BtUGV3V9lChoBmgJaA9DCPWDukih7AXAlIaUUpRoFUsyaBZHQKe0LDxb0OF1fZQoaAZoCWgPQwjGi4UhctoKwJSGlFKUaBVLMmgWR0Cns8yEDhcadX2UKGgGaAloD0MI1V3ZBYOr/b+UhpRSlGgVSzJoFkdAp7Ntm8M/hXV9lChoBmgJaA9DCHv5nSYzfg3AlIaUUpRoFUsyaBZHQKeyjuIAOrh1fZQoaAZoCWgPQwiazeMwmN8CwJSGlFKUaBVLMmgWR0CntUrw4KhMdX2UKGgGaAloD0MIUTHO34TiC8CUhpRSlGgVSzJoFkdAp7TrHp8neHV9lChoBmgJaA9DCAXdXtIYLQrAlIaUUpRoFUsyaBZHQKe0jB+nZTR1fZQoaAZoCWgPQwjFrYIY6BoNwJSGlFKUaBVLMmgWR0Cns61YhdMTdX2UKGgGaAloD0MIxsN7DiynAcCUhpRSlGgVSzJoFkdAp7ZhF/hESnV9lChoBmgJaA9DCAwEATJ0LAPAlIaUUpRoFUsyaBZHQKe2AXVsk6d1fZQoaAZoCWgPQwjWAntMpHQPwJSGlFKUaBVLMmgWR0CntaKc/dIodX2UKGgGaAloD0MIM2spIO0fBMCUhpRSlGgVSzJoFkdAp7TD1EmY0HV9lChoBmgJaA9DCI+JlGbzeAnAlIaUUpRoFUsyaBZHQKe3k5MDfWN1fZQoaAZoCWgPQwh8KxIT1DAEwJSGlFKUaBVLMmgWR0CntzQ3o9s8dX2UKGgGaAloD0MIRuuoaoLICsCUhpRSlGgVSzJoFkdAp7bVqtYCAHV9lChoBmgJaA9DCARXeQJhBwDAlIaUUpRoFUsyaBZHQKe19y/bj951ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (745 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.9198509249836206, "std_reward": 0.47189144566405633, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T06:36:24.547815"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b8e4906d857fbb0de2b2a57b128d3e1fba3721ca10ec44c8b32c1311ef917e0
3
+ size 3212