#!/usr/bin/env bash accelerate launch run_distillation.py \ --model_name_or_path "./distil-large-v3-init" \ --teacher_model_name_or_path "openai/whisper-large-v3" \ --train_dataset_name "litus-ai/common_voice_16_1_it_pseudo_labelled_whisper_large_v3+litus-ai/google_fleurs_it_pseudo_labelled_whisper_large_v3" \ --train_split_name "train+train" \ --train_dataset_config_name "it+it_it" \ --text_column_name "sentence+transcription" \ --eval_dataset_name "litus-ai/google_fleurs_it_pseudo_labelled_whisper_large_v3" \ --eval_split_name "test" \ --eval_dataset_config_name "it_it" \ --eval_text_column_name "transcription" \ --eval_steps 1000 \ --save_steps 1000 \ --warmup_steps 200 \ --learning_rate 0.0001 \ --lr_scheduler_type "constant_with_warmup" \ --timestamp_probability 0.2 \ --condition_on_prev_probability 0.2 \ --language "it" \ --task "transcribe" \ --logging_steps 25 \ --save_total_limit 1 \ --max_steps 10000 \ --wer_threshold 20 \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 16 \ --dataloader_num_workers 8 \ --preprocessing_num_workers 8 \ --ddp_timeout 7200 \ --dtype "bfloat16" \ --attn_implementation "sdpa" \ --output_dir "./" \ --do_train \ --do_eval \ --gradient_checkpointing \ --overwrite_output_dir \ --predict_with_generate \ --freeze_encoder \ --freeze_embed_positions \ --streaming False \ --push_to_hub