--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: test-trainer-to-hub results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8455882352941176 - name: F1 type: f1 value: 0.893760539629005 --- # test-trainer-to-hub This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7352 - Accuracy: 0.8456 - F1: 0.8938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 459 | 0.4489 | 0.8235 | 0.8792 | | 0.5651 | 2.0 | 918 | 0.4885 | 0.8260 | 0.8811 | | 0.3525 | 3.0 | 1377 | 0.7352 | 0.8456 | 0.8938 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0