--- language: en license: apache-2.0 tags: - text-classification datasets: - sst2 metrics: - accuracy --- ## bert-base-uncased model fine-tuned on SST-2 This model was created using the [nn_pruning](https://github.com/huggingface/nn_pruning) python library: the linear layers contains **37%** of the original weights. The model contains **51%** of the original weights **overall** (the embeddings account for a significant part of the model, and they are not pruned by this method).
In terms of perfomance, its **accuracy** is **91.17**. ## Fine-Pruning details This model was fine-tuned from the HuggingFace [model](https://huggingface.co/bert-base-uncased) checkpoint on task, and distilled from the model [textattack/bert-base-uncased-SST-2](https://huggingface.co/textattack/bert-base-uncased-SST-2). This model is case-insensitive: it does not make a difference between english and English. A side-effect of the block pruning method is that some of the attention heads are completely removed: 88 heads were removed on a total of 144 (61.1%). Here is a detailed view on how the remaining heads are distributed in the network after pruning. ## Details of the SST-2 dataset | Dataset | Split | # samples | | -------- | ----- | --------- | | SST-2 | train | 67K | | SST-2 | eval | 872 | ### Results **Pytorch model file size**: `351MB` (original BERT: `420MB`) | Metric | # Value | # Original ([Table 2](https://www.aclweb.org/anthology/N19-1423.pdf))| Variation | | ------ | --------- | --------- | --------- | | **accuracy** | **91.17** | **92.7** | **-1.53**| ## Example Usage Install nn_pruning: it contains the optimization script, which just pack the linear layers into smaller ones by removing empty rows/columns. `pip install nn_pruning` Then you can use the `transformers library` almost as usual: you just have to call `optimize_model` when the pipeline has loaded. ```python from transformers import pipeline from nn_pruning.inference_model_patcher import optimize_model cls_pipeline = pipeline( "text-classification", model="echarlaix/bert-base-uncased-sst2-acc91.1-d37-hybrid", tokenizer="echarlaix/bert-base-uncased-sst2-acc91.1-d37-hybrid", ) print(f"Parameters count (includes only head pruning, no feed forward pruning)={int(cls_pipeline.model.num_parameters() / 1E6)}M") cls_pipeline.model = optimize_model(cls_pipeline.model, "dense") print(f"Parameters count after optimization={int(cls_pipeline.model.num_parameters() / 1E6)}M") predictions = cls_pipeline("This restaurant is awesome") print(predictions) ```