--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-arty results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # swin-tiny-patch4-window7-224-finetuned-arty This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0002 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2386 | 0.43 | 50 | 0.0643 | 0.9967 | | 0.0359 | 0.87 | 100 | 0.0035 | 0.9996 | | 0.058 | 1.3 | 150 | 0.0015 | 0.9996 | | 0.0297 | 1.74 | 200 | 0.0003 | 1.0 | | 0.0175 | 2.17 | 250 | 0.0002 | 1.0 | | 0.0166 | 2.6 | 300 | 0.0002 | 1.0 | | 0.0318 | 3.04 | 350 | 0.0001 | 1.0 | | 0.0062 | 3.47 | 400 | 0.0002 | 1.0 | | 0.0101 | 3.9 | 450 | 0.0002 | 1.0 | | 0.0066 | 4.34 | 500 | 0.0002 | 1.0 | | 0.005 | 4.77 | 550 | 0.0002 | 1.0 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3