--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-14B-Instruct tags: - generated_from_trainer model-index: - name: outputs/lora-out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.0` ```yaml base_model: Qwen/Qwen2.5-14B-Instruct trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: main_dataset_v1.json type: alpaca special_tokens: bos_token: eos_token: "<|im_end|>" pad_token: "<|endoftext|>" dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/lora-out sequence_len: 1024 sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: dywoo_axolotl wandb_entity: dywoo wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 3 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.00005 train_on_inputs: group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: logging_steps: 100 xformers_attention: flash_attention: true warmup_ratio: 0.01 eval_steps: 100 save_steps: 100 save_total_limit: 2 eval_sample_packing: debug: deepspeed: weight_decay: 0.01 fsdp: fsdp_config: ```

# outputs/lora-out This model is a fine-tuned version of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 16 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0019 | 1 | 0.3101 | | 0.1179 | 0.1869 | 100 | 0.0830 | | 0.0312 | 0.3738 | 200 | 0.0780 | | 0.0276 | 0.5607 | 300 | 0.0743 | | 0.0256 | 0.7477 | 400 | 0.0692 | | 0.0222 | 0.9346 | 500 | 0.0705 | | 0.0199 | 1.1215 | 600 | 0.0686 | | 0.0174 | 1.3084 | 700 | 0.0695 | | 0.015 | 1.4953 | 800 | 0.0702 | | 0.0158 | 1.6822 | 900 | 0.0721 | | 0.0147 | 1.8692 | 1000 | 0.0706 | | 0.0139 | 2.0561 | 1100 | 0.0701 | | 0.0097 | 2.2430 | 1200 | 0.0739 | | 0.0099 | 2.4299 | 1300 | 0.0745 | | 0.0097 | 2.6168 | 1400 | 0.0745 | | 0.0107 | 2.8037 | 1500 | 0.0746 | | 0.0093 | 2.9907 | 1600 | 0.0749 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.3