# Modified from https://github.com/huggingface/diffusers/blob/bc691231360a4cbc7d19a58742ebb8ed0f05e027/scripts/convert_original_stable_diffusion_to_diffusers.py import argparse import torch import sys sys.path.insert(0, ".") from diffusers.models import ( AutoencoderKL, ) from omegaconf import OmegaConf from diffusers.schedulers import DDIMScheduler from diffusers.utils import logging from typing import Any from accelerate import init_empty_weights from accelerate.utils import set_module_tensor_to_device from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor from mv_unet import MultiViewUNetModel from pipeline import MVDreamPipeline import kiui logger = logging.get_logger(__name__) def assign_to_checkpoint( paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None, ): """ This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits attention layers, and takes into account additional replacements that may arise. Assigns the weights to the new checkpoint. """ assert isinstance( paths, list ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): old_tensor = old_checkpoint[path] channels = old_tensor.shape[0] // 3 target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) assert config is not None num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 old_tensor = old_tensor.reshape( (num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) query, key, value = old_tensor.split(channels // num_heads, dim=1) checkpoint[path_map["query"]] = query.reshape(target_shape) checkpoint[path_map["key"]] = key.reshape(target_shape) checkpoint[path_map["value"]] = value.reshape(target_shape) for path in paths: new_path = path["new"] # These have already been assigned if ( attention_paths_to_split is not None and new_path in attention_paths_to_split ): continue # Global renaming happens here new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") if additional_replacements is not None: for replacement in additional_replacements: new_path = new_path.replace(replacement["old"], replacement["new"]) # proj_attn.weight has to be converted from conv 1D to linear is_attn_weight = "proj_attn.weight" in new_path or ( "attentions" in new_path and "to_" in new_path ) shape = old_checkpoint[path["old"]].shape if is_attn_weight and len(shape) == 3: checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] elif is_attn_weight and len(shape) == 4: checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0] else: checkpoint[new_path] = old_checkpoint[path["old"]] def shave_segments(path, n_shave_prefix_segments=1): """ Removes segments. Positive values shave the first segments, negative shave the last segments. """ if n_shave_prefix_segments >= 0: return ".".join(path.split(".")[n_shave_prefix_segments:]) else: return ".".join(path.split(".")[:n_shave_prefix_segments]) def create_vae_diffusers_config(original_config, image_size): """ Creates a config for the diffusers based on the config of the LDM model. """ if 'imagedream' in original_config.model.target: vae_params = original_config.model.params.vae_config.params.ddconfig _ = original_config.model.params.vae_config.params.embed_dim vae_key = "vae_model." else: vae_params = original_config.model.params.first_stage_config.params.ddconfig _ = original_config.model.params.first_stage_config.params.embed_dim vae_key = "first_stage_model." block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) config = { "sample_size": image_size, "in_channels": vae_params.in_channels, "out_channels": vae_params.out_ch, "down_block_types": tuple(down_block_types), "up_block_types": tuple(up_block_types), "block_out_channels": tuple(block_out_channels), "latent_channels": vae_params.z_channels, "layers_per_block": vae_params.num_res_blocks, } return config, vae_key def convert_ldm_vae_checkpoint(checkpoint, config, vae_key): # extract state dict for VAE vae_state_dict = {} keys = list(checkpoint.keys()) for key in keys: if key.startswith(vae_key): vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) new_checkpoint = {} new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[ "encoder.conv_out.weight" ] new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[ "encoder.norm_out.weight" ] new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[ "encoder.norm_out.bias" ] new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[ "decoder.conv_out.weight" ] new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[ "decoder.norm_out.weight" ] new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[ "decoder.norm_out.bias" ] new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only num_down_blocks = len( { ".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer } ) down_blocks = { layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) } # Retrieves the keys for the decoder up blocks only num_up_blocks = len( { ".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer } ) up_blocks = { layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) } for i in range(num_down_blocks): resnets = [ key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key ] if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: new_checkpoint[ f"encoder.down_blocks.{i}.downsamplers.0.conv.weight" ] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight") new_checkpoint[ f"encoder.down_blocks.{i}.downsamplers.0.conv.bias" ] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias") paths = renew_vae_resnet_paths(resnets) meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} assign_to_checkpoint( paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config, ) mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] num_mid_res_blocks = 2 for i in range(1, num_mid_res_blocks + 1): resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] paths = renew_vae_resnet_paths(resnets) meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} assign_to_checkpoint( paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config, ) mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] paths = renew_vae_attention_paths(mid_attentions) meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint( paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config, ) conv_attn_to_linear(new_checkpoint) for i in range(num_up_blocks): block_id = num_up_blocks - 1 - i resnets = [ key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key ] if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: new_checkpoint[ f"decoder.up_blocks.{i}.upsamplers.0.conv.weight" ] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"] new_checkpoint[ f"decoder.up_blocks.{i}.upsamplers.0.conv.bias" ] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"] paths = renew_vae_resnet_paths(resnets) meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} assign_to_checkpoint( paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config, ) mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] num_mid_res_blocks = 2 for i in range(1, num_mid_res_blocks + 1): resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] paths = renew_vae_resnet_paths(resnets) meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} assign_to_checkpoint( paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config, ) mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] paths = renew_vae_attention_paths(mid_attentions) meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint( paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config, ) conv_attn_to_linear(new_checkpoint) return new_checkpoint def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): """ Updates paths inside resnets to the new naming scheme (local renaming) """ mapping = [] for old_item in old_list: new_item = old_item new_item = new_item.replace("nin_shortcut", "conv_shortcut") new_item = shave_segments( new_item, n_shave_prefix_segments=n_shave_prefix_segments ) mapping.append({"old": old_item, "new": new_item}) return mapping def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): """ Updates paths inside attentions to the new naming scheme (local renaming) """ mapping = [] for old_item in old_list: new_item = old_item new_item = new_item.replace("norm.weight", "group_norm.weight") new_item = new_item.replace("norm.bias", "group_norm.bias") new_item = new_item.replace("q.weight", "to_q.weight") new_item = new_item.replace("q.bias", "to_q.bias") new_item = new_item.replace("k.weight", "to_k.weight") new_item = new_item.replace("k.bias", "to_k.bias") new_item = new_item.replace("v.weight", "to_v.weight") new_item = new_item.replace("v.bias", "to_v.bias") new_item = new_item.replace("proj_out.weight", "to_out.0.weight") new_item = new_item.replace("proj_out.bias", "to_out.0.bias") new_item = shave_segments( new_item, n_shave_prefix_segments=n_shave_prefix_segments ) mapping.append({"old": old_item, "new": new_item}) return mapping def conv_attn_to_linear(checkpoint): keys = list(checkpoint.keys()) attn_keys = ["query.weight", "key.weight", "value.weight"] for key in keys: if ".".join(key.split(".")[-2:]) in attn_keys: if checkpoint[key].ndim > 2: checkpoint[key] = checkpoint[key][:, :, 0, 0] elif "proj_attn.weight" in key: if checkpoint[key].ndim > 2: checkpoint[key] = checkpoint[key][:, :, 0] def create_unet_config(original_config) -> Any: return OmegaConf.to_container( original_config.model.params.unet_config.params, resolve=True ) def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, device): checkpoint = torch.load(checkpoint_path, map_location=device) # print(f"Checkpoint: {checkpoint.keys()}") torch.cuda.empty_cache() original_config = OmegaConf.load(original_config_file) # print(f"Original Config: {original_config}") prediction_type = "epsilon" image_size = 256 num_train_timesteps = ( getattr(original_config.model.params, "timesteps", None) or 1000 ) beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02 beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085 scheduler = DDIMScheduler( beta_end=beta_end, beta_schedule="scaled_linear", beta_start=beta_start, num_train_timesteps=num_train_timesteps, steps_offset=1, clip_sample=False, set_alpha_to_one=False, prediction_type=prediction_type, ) scheduler.register_to_config(clip_sample=False) unet_config = create_unet_config(original_config) # remove unused configs unet_config.pop('legacy', None) unet_config.pop('use_linear_in_transformer', None) unet_config.pop('use_spatial_transformer', None) unet_config.pop('ip_mode', None) unet_config.pop('with_ip', None) unet = MultiViewUNetModel(**unet_config) unet.register_to_config(**unet_config) # print(f"Unet State Dict: {unet.state_dict().keys()}") unet.load_state_dict( { key.replace("model.diffusion_model.", ""): value for key, value in checkpoint.items() if key.replace("model.diffusion_model.", "") in unet.state_dict() } ) for param_name, param in unet.state_dict().items(): set_module_tensor_to_device(unet, param_name, device=device, value=param) # Convert the VAE model. vae_config, vae_key = create_vae_diffusers_config(original_config, image_size=image_size) converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config, vae_key) if ( "model" in original_config and "params" in original_config.model and "scale_factor" in original_config.model.params ): vae_scaling_factor = original_config.model.params.scale_factor else: vae_scaling_factor = 0.18215 # default SD scaling factor vae_config["scaling_factor"] = vae_scaling_factor with init_empty_weights(): vae = AutoencoderKL(**vae_config) for param_name, param in converted_vae_checkpoint.items(): set_module_tensor_to_device(vae, param_name, device=device, value=param) # we only supports SD 2.1 based model tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="tokenizer") text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="text_encoder").to(device=device) # type: ignore # imagedream variant if unet.ip_dim > 0: feature_extractor: CLIPImageProcessor = CLIPImageProcessor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K") image_encoder: CLIPVisionModel = CLIPVisionModel.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K") else: feature_extractor = None image_encoder = None pipe = MVDreamPipeline( vae=vae, unet=unet, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder, ) return pipe if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert.", ) parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument( "--half", action="store_true", help="Save weights in half precision." ) parser.add_argument( "--test", action="store_true", help="Whether to test inference after convertion.", ) parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to the output model.", ) parser.add_argument( "--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)" ) args = parser.parse_args() args.device = torch.device( args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu" ) pipe = convert_from_original_mvdream_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, device=args.device, ) if args.half: pipe.to(torch_dtype=torch.float16) print(f"Saving pipeline to {args.dump_path}...") pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) if args.test: try: # mvdream if pipe.unet.ip_dim == 0: print(f"Testing each subcomponent of the pipeline...") images = pipe( prompt="Head of Hatsune Miku", negative_prompt="painting, bad quality, flat", output_type="pil", guidance_scale=7.5, num_inference_steps=50, device=args.device, ) for i, image in enumerate(images): image.save(f"test_image_{i}.png") # type: ignore print(f"Testing entire pipeline...") loaded_pipe = MVDreamPipeline.from_pretrained(args.dump_path) # type: ignore images = loaded_pipe( prompt="Head of Hatsune Miku", negative_prompt="painting, bad quality, flat", output_type="pil", guidance_scale=7.5, num_inference_steps=50, device=args.device, ) for i, image in enumerate(images): image.save(f"test_image_{i}.png") # type: ignore # imagedream else: input_image = kiui.read_image('data/anya_rgba.png', mode='float') print(f"Testing each subcomponent of the pipeline...") images = pipe( image=input_image, prompt="", negative_prompt="", output_type="pil", guidance_scale=5.0, num_inference_steps=50, device=args.device, ) for i, image in enumerate(images): image.save(f"test_image_{i}.png") # type: ignore print(f"Testing entire pipeline...") loaded_pipe = MVDreamPipeline.from_pretrained(args.dump_path) # type: ignore images = loaded_pipe( image=input_image, prompt="", negative_prompt="", output_type="pil", guidance_scale=5.0, num_inference_steps=50, device=args.device, ) for i, image in enumerate(images): image.save(f"test_image_{i}.png") # type: ignore print("Inference test passed!") except Exception as e: print(f"Failed to test inference: {e}")