---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Total net additions to property and equipment for AWS in 2023 amounted
to $24,843 million.
sentences:
- What technological feature helps protect digital transactions in the Visa Token
Service?
- What was the total net addition to property and equipment for AWS in the year
2023?
- By what proportion did net cash used in financing activities increase from 2022
to 2023?
- source_sentence: 'Leases generally contain one or more of the following options,
which the Company can exercise at the end of the initial term: (a) renew the lease
for a defined number of years at the then-fair market rental rate or rate stipulated
in the lease agreement; (b) purchase the property at the then-fair market value
or purchase price stated in the agreement; or (c) a right of first refusal in
the event of a third-party offer.'
sentences:
- What are the requirements for health insurers and group health plans in providing
cost estimates to consumers?
- What options does the company have at the end of the lease term for their leased
properties?
- How much did the company incur in intangible amortization costs related to the
eOne acquisition in 2022?
- source_sentence: We recorded an acquisition termination cost of $1.35 billion in
fiscal year 2023 reflecting the write-off of the prepayment provided at signing.
sentences:
- How much did NVIDIA record as an acquisition termination cost in fiscal year 2023
related to the Arm Share Purchase Agreement?
- What is included in the consolidated financial statements and accompanying notes
mentioned in Part IV, Item 15(a)(1) of the Annual Report on Form 10-K?
- What risks are associated with projecting the effectiveness of internal controls
into future periods as mentioned?
- source_sentence: Item 8 is labeled as Financial Statements and Supplementary Data.
sentences:
- What was the percentage of trading days in 2023 where trading-related revenue
was recorded as positive?
- How is the discount rate for the Family Dollar goodwill impairment evaluation
determined?
- What is the title of Item 8 in the financial document?
- source_sentence: Details about legal proceedings are included in Part II, Item 8,
"Financial Statements and Supplementary Data" of the Annual Report on Form 10-K,
under the caption "Legal Proceedings".
sentences:
- Where can details about legal proceedings be located in an Annual Report on Form
10-K?
- How many stores did AutoZone operate in the United States as of August 26, 2023?
- In the context of Hewlett Packard Enterprise's recent financial discussions, what
factors are expected to impact their operational costs and revenue growth moving
forward?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7071428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8414285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.88
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9314285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7071428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28047619047619043
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.176
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09314285714285712
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7071428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8414285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.88
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9314285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8207437059171859
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7853486394557823
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7881907906804949
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6957142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8385714285714285
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8757142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.93
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6957142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2795238095238095
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17514285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09299999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6957142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8385714285714285
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8757142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.93
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8149439460863356
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7780714285714285
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.781021025356189
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6885714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.83
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8742857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9142857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6885714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17485714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09142857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6885714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.83
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8742857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9142857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8060991379418679
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7710873015873015
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7751792513774886
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6771428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8214285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8614285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9142857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6771428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2738095238095238
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17228571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09142857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6771428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8214285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8614285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9142857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7979494993398927
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7605890022675734
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7639633810343436
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6557142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7871428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8271428571428572
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8714285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6557142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2623809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1654285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08714285714285713
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6557142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7871428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8271428571428572
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8714285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7664083634078753
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7326604308390022
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7375736792740525
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dustyatx/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Details about legal proceedings are included in Part II, Item 8, "Financial Statements and Supplementary Data" of the Annual Report on Form 10-K, under the caption "Legal Proceedings".',
'Where can details about legal proceedings be located in an Annual Report on Form 10-K?',
'How many stores did AutoZone operate in the United States as of August 26, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7071 |
| cosine_accuracy@3 | 0.8414 |
| cosine_accuracy@5 | 0.88 |
| cosine_accuracy@10 | 0.9314 |
| cosine_precision@1 | 0.7071 |
| cosine_precision@3 | 0.2805 |
| cosine_precision@5 | 0.176 |
| cosine_precision@10 | 0.0931 |
| cosine_recall@1 | 0.7071 |
| cosine_recall@3 | 0.8414 |
| cosine_recall@5 | 0.88 |
| cosine_recall@10 | 0.9314 |
| cosine_ndcg@10 | 0.8207 |
| cosine_mrr@10 | 0.7853 |
| **cosine_map@100** | **0.7882** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.6957 |
| cosine_accuracy@3 | 0.8386 |
| cosine_accuracy@5 | 0.8757 |
| cosine_accuracy@10 | 0.93 |
| cosine_precision@1 | 0.6957 |
| cosine_precision@3 | 0.2795 |
| cosine_precision@5 | 0.1751 |
| cosine_precision@10 | 0.093 |
| cosine_recall@1 | 0.6957 |
| cosine_recall@3 | 0.8386 |
| cosine_recall@5 | 0.8757 |
| cosine_recall@10 | 0.93 |
| cosine_ndcg@10 | 0.8149 |
| cosine_mrr@10 | 0.7781 |
| **cosine_map@100** | **0.781** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6886 |
| cosine_accuracy@3 | 0.83 |
| cosine_accuracy@5 | 0.8743 |
| cosine_accuracy@10 | 0.9143 |
| cosine_precision@1 | 0.6886 |
| cosine_precision@3 | 0.2767 |
| cosine_precision@5 | 0.1749 |
| cosine_precision@10 | 0.0914 |
| cosine_recall@1 | 0.6886 |
| cosine_recall@3 | 0.83 |
| cosine_recall@5 | 0.8743 |
| cosine_recall@10 | 0.9143 |
| cosine_ndcg@10 | 0.8061 |
| cosine_mrr@10 | 0.7711 |
| **cosine_map@100** | **0.7752** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.6771 |
| cosine_accuracy@3 | 0.8214 |
| cosine_accuracy@5 | 0.8614 |
| cosine_accuracy@10 | 0.9143 |
| cosine_precision@1 | 0.6771 |
| cosine_precision@3 | 0.2738 |
| cosine_precision@5 | 0.1723 |
| cosine_precision@10 | 0.0914 |
| cosine_recall@1 | 0.6771 |
| cosine_recall@3 | 0.8214 |
| cosine_recall@5 | 0.8614 |
| cosine_recall@10 | 0.9143 |
| cosine_ndcg@10 | 0.7979 |
| cosine_mrr@10 | 0.7606 |
| **cosine_map@100** | **0.764** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6557 |
| cosine_accuracy@3 | 0.7871 |
| cosine_accuracy@5 | 0.8271 |
| cosine_accuracy@10 | 0.8714 |
| cosine_precision@1 | 0.6557 |
| cosine_precision@3 | 0.2624 |
| cosine_precision@5 | 0.1654 |
| cosine_precision@10 | 0.0871 |
| cosine_recall@1 | 0.6557 |
| cosine_recall@3 | 0.7871 |
| cosine_recall@5 | 0.8271 |
| cosine_recall@10 | 0.8714 |
| cosine_ndcg@10 | 0.7664 |
| cosine_mrr@10 | 0.7327 |
| **cosine_map@100** | **0.7376** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 6,300 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details |
The company must continuously strengthen its capabilities in marketing and innovation to compete in a digital environment and maintain brand loyalty and marketallability. In addition, it is increasing its investments in e-commerce to support retail and meal delivery services, offering more package sizes that are fit-for-purpose for online sales and shifting more consumer and trade promotions to digital.
| What strategies is the company employing to enhance its competitiveness in a digital environment?
|
| Fedflowing expanded or relocated its hub and linehaul network, FedEx Ground also introduced new safety technologies, set new driver standards, and made operational enhancements for safer handling of heavy items.
| What specific changes has FedEx Ground made for vehicle and driver safety?
|
| The debt financing, which is being provided by a syndicate of Chinese financial institutions, contains certain covenants and a maximum borrowing limit of ¥29.7 billion RMB (approximately $4.2 billion).
| What is the maximum borrowing limit of the debt financing provided by the syndicate of Chinese financial institutions for Universal Beijing Resort?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters