--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.63125 --- # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1383 - Accuracy: 0.6312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.925 | 1.0 | 10 | 1.3570 | 0.4688 | | 0.8379 | 2.0 | 20 | 1.1685 | 0.5875 | | 0.6737 | 3.0 | 30 | 1.1795 | 0.6 | | 0.4606 | 4.0 | 40 | 1.1383 | 0.6312 | | 0.3416 | 5.0 | 50 | 1.2393 | 0.5687 | | 0.2493 | 6.0 | 60 | 1.3971 | 0.5938 | | 0.2341 | 7.0 | 70 | 1.3546 | 0.6062 | | 0.1797 | 8.0 | 80 | 1.3681 | 0.5938 | | 0.1221 | 9.0 | 90 | 1.6936 | 0.525 | | 0.1077 | 10.0 | 100 | 1.7008 | 0.5375 | | 0.0966 | 11.0 | 110 | 1.7380 | 0.525 | | 0.1073 | 12.0 | 120 | 1.5617 | 0.575 | | 0.0849 | 13.0 | 130 | 1.6178 | 0.6125 | | 0.0704 | 14.0 | 140 | 1.6144 | 0.6125 | | 0.0568 | 15.0 | 150 | 1.6111 | 0.6188 | | 0.0555 | 16.0 | 160 | 1.5946 | 0.6 | | 0.0498 | 17.0 | 170 | 1.6291 | 0.625 | | 0.0464 | 18.0 | 180 | 1.6574 | 0.6188 | | 0.0443 | 19.0 | 190 | 1.6740 | 0.6125 | | 0.0429 | 20.0 | 200 | 1.6781 | 0.6125 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1