--- license: apache-2.0 base_model: google/vit-large-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.51875 --- # image_classification This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5386 - Accuracy: 0.5188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0473 | 1.0 | 20 | 2.0179 | 0.175 | | 1.6184 | 2.0 | 40 | 1.7787 | 0.2437 | | 1.2134 | 3.0 | 60 | 1.5985 | 0.3625 | | 1.0157 | 4.0 | 80 | 1.3311 | 0.4813 | | 0.8578 | 5.0 | 100 | 1.3041 | 0.4875 | | 0.6496 | 6.0 | 120 | 1.3222 | 0.5062 | | 0.5972 | 7.0 | 140 | 1.5594 | 0.4562 | | 0.5073 | 8.0 | 160 | 1.4126 | 0.4813 | | 0.3964 | 9.0 | 180 | 1.3702 | 0.525 | | 0.4054 | 10.0 | 200 | 1.3894 | 0.5188 | | 0.2845 | 11.0 | 220 | 1.4471 | 0.5188 | | 0.2262 | 12.0 | 240 | 1.5165 | 0.525 | | 0.2412 | 13.0 | 260 | 1.4684 | 0.5125 | | 0.2229 | 14.0 | 280 | 1.4005 | 0.525 | | 0.2078 | 15.0 | 300 | 1.5629 | 0.5062 | | 0.1619 | 16.0 | 320 | 1.6014 | 0.525 | | 0.1834 | 17.0 | 340 | 1.4821 | 0.5125 | | 0.1594 | 18.0 | 360 | 1.5195 | 0.5375 | | 0.1249 | 19.0 | 380 | 1.5585 | 0.5188 | | 0.1117 | 20.0 | 400 | 1.4735 | 0.5687 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1