--- language: - en base_model: google-t5/t5-base tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: SST2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.948394495412844 --- # SST2 This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.2225 - Accuracy: 0.9484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1443 | 1.0 | 2105 | 0.2072 | 0.9323 | | 0.1152 | 2.0 | 4210 | 0.2127 | 0.9404 | | 0.0849 | 3.0 | 6315 | 0.2156 | 0.9438 | | 0.0709 | 4.0 | 8420 | 0.2225 | 0.9484 | | 0.06 | 5.0 | 10525 | 0.2719 | 0.9404 | | 0.0507 | 6.0 | 12630 | 0.2911 | 0.9404 | | 0.0435 | 7.0 | 14735 | 0.3279 | 0.9335 | | 0.0357 | 8.0 | 16840 | 0.3566 | 0.9312 | | 0.0274 | 9.0 | 18945 | 0.3876 | 0.9358 | | 0.0253 | 10.0 | 21050 | 0.4034 | 0.9381 | ### Framework versions - Transformers 4.43.3 - Pytorch 1.11.0+cu113 - Datasets 2.20.0 - Tokenizers 0.19.1