--- language: - en base_model: google-t5/t5-base tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: QNLI results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.9282445542742083 --- # QNLI This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.2215 - Accuracy: 0.9282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2856 | 1.0 | 1637 | 0.2216 | 0.9149 | | 0.2258 | 2.0 | 3274 | 0.2060 | 0.9220 | | 0.1791 | 3.0 | 4911 | 0.2038 | 0.9277 | | 0.1476 | 4.0 | 6548 | 0.2215 | 0.9282 | | 0.1263 | 5.0 | 8185 | 0.2301 | 0.9279 | ### Framework versions - Transformers 4.43.3 - Pytorch 1.11.0+cu113 - Datasets 2.20.0 - Tokenizers 0.19.1