--- language: - en base_model: FacebookAI/roberta-large tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: SST2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9621559633027523 --- # SST2 This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.1664 - Accuracy: 0.9622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1696 | 1.0 | 1053 | 0.1285 | 0.9507 | | 0.1166 | 2.0 | 2106 | 0.1410 | 0.9610 | | 0.0865 | 3.0 | 3159 | 0.1355 | 0.9576 | | 0.0637 | 4.0 | 4212 | 0.1412 | 0.9587 | | 0.0468 | 5.0 | 5265 | 0.1664 | 0.9622 | | 0.0335 | 6.0 | 6318 | 0.1930 | 0.9599 | ### Framework versions - Transformers 4.43.3 - Pytorch 1.11.0+cu113 - Datasets 2.20.0 - Tokenizers 0.19.1