system HF staff commited on
Commit
a2ef41d
1 Parent(s): 26eb88f

Commit From AutoTrain

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
37
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
38
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - autotrain
4
+ - text-classification
5
+ language:
6
+ - ar
7
+ widget:
8
+ - text: "I love AutoTrain"
9
+ datasets:
10
+ - dru-acrps/autotrain-data-dru-text-classification-v2
11
+ co2_eq_emissions:
12
+ emissions: 1.5695373677362612
13
+ ---
14
+
15
+ # Model Trained Using AutoTrain
16
+
17
+ - Problem type: Multi-class Classification
18
+ - Model ID: 85440142814
19
+ - CO2 Emissions (in grams): 1.5695
20
+
21
+ ## Validation Metrics
22
+
23
+ - Loss: 0.504
24
+ - Accuracy: 0.853
25
+ - Macro F1: 0.836
26
+ - Micro F1: 0.853
27
+ - Weighted F1: 0.853
28
+ - Macro Precision: 0.844
29
+ - Micro Precision: 0.853
30
+ - Weighted Precision: 0.854
31
+ - Macro Recall: 0.830
32
+ - Micro Recall: 0.853
33
+ - Weighted Recall: 0.853
34
+
35
+
36
+ ## Usage
37
+
38
+ You can use cURL to access this model:
39
+
40
+ ```
41
+ $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/dru-acrps/autotrain-dru-text-classification-v2-85440142814
42
+ ```
43
+
44
+ Or Python API:
45
+
46
+ ```
47
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
48
+
49
+ model = AutoModelForSequenceClassification.from_pretrained("dru-acrps/autotrain-dru-text-classification-v2-85440142814", use_auth_token=True)
50
+
51
+ tokenizer = AutoTokenizer.from_pretrained("dru-acrps/autotrain-dru-text-classification-v2-85440142814", use_auth_token=True)
52
+
53
+ inputs = tokenizer("I love AutoTrain", return_tensors="pt")
54
+
55
+ outputs = model(**inputs)
56
+ ```
config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "AutoTrain",
3
+ "_num_labels": 14,
4
+ "architectures": [
5
+ "BertForSequenceClassification"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "AnthropologyAndSociology",
14
+ "1": "ArtAndLiterature",
15
+ "2": "Culture",
16
+ "3": "Education",
17
+ "4": "History",
18
+ "5": "LanguageAndLiguistics",
19
+ "6": "Law",
20
+ "7": "Medical",
21
+ "8": "Philosophy",
22
+ "9": "Politics",
23
+ "10": "Religion",
24
+ "11": "Sports",
25
+ "12": "finance-and-economy",
26
+ "13": "science-and-technology"
27
+ },
28
+ "initializer_range": 0.02,
29
+ "intermediate_size": 3072,
30
+ "label2id": {
31
+ "AnthropologyAndSociology": 0,
32
+ "ArtAndLiterature": 1,
33
+ "Culture": 2,
34
+ "Education": 3,
35
+ "History": 4,
36
+ "LanguageAndLiguistics": 5,
37
+ "Law": 6,
38
+ "Medical": 7,
39
+ "Philosophy": 8,
40
+ "Politics": 9,
41
+ "Religion": 10,
42
+ "Sports": 11,
43
+ "finance-and-economy": 12,
44
+ "science-and-technology": 13
45
+ },
46
+ "layer_norm_eps": 1e-12,
47
+ "max_length": 64,
48
+ "max_position_embeddings": 512,
49
+ "model_type": "bert",
50
+ "num_attention_heads": 12,
51
+ "num_hidden_layers": 12,
52
+ "pad_token_id": 0,
53
+ "padding": "max_length",
54
+ "position_embedding_type": "absolute",
55
+ "problem_type": "single_label_classification",
56
+ "torch_dtype": "float32",
57
+ "transformers_version": "4.29.2",
58
+ "type_vocab_size": 2,
59
+ "use_cache": true,
60
+ "vocab_size": 64000
61
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea3f5cdf54c18f8b4b002feb937cf61916db31306189eb93235bf9e6096a5559
3
+ size 540844176
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2d541447e286f03cb40b8ac969451592ac244b396ee706f51f7392af6233c6a
3
+ size 540889205
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f47cdf566781758ed5b1f8ae3113d12ab6ac939e912d48adb2a4e98b2cb629c8
3
+ size 1777125
tokenizer_config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": false,
6
+ "mask_token": "[MASK]",
7
+ "max_len": 512,
8
+ "model_max_length": 512,
9
+ "never_split": [
10
+ "[بريد]",
11
+ "[مستخدم]",
12
+ "[رابط]"
13
+ ],
14
+ "pad_token": "[PAD]",
15
+ "sep_token": "[SEP]",
16
+ "strip_accents": null,
17
+ "tokenize_chinese_chars": true,
18
+ "tokenizer_class": "BertTokenizer",
19
+ "unk_token": "[UNK]"
20
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff