--- license: apache-2.0 tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: whisper-small-amet results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: fleurs config: am_et split: validation args: am_et metrics: - name: Wer type: wer value: 100.0 --- # whisper-small-amet This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 6.8012 - Wer: 100.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.9013 | 100.0 | 100 | 2.7051 | 276.0 | | 0.0002 | 200.0 | 200 | 3.7415 | 334.6667 | | 0.0001 | 300.0 | 300 | 3.8402 | 117.3333 | | 0.0001 | 400.0 | 400 | 3.8931 | 340.0 | | 0.0001 | 500.0 | 500 | 4.0671 | 397.3333 | | 0.0001 | 600.0 | 600 | 4.2844 | 137.3333 | | 0.0 | 700.0 | 700 | 4.4697 | 289.3333 | | 0.0 | 800.0 | 800 | 4.6278 | 449.3333 | | 0.0 | 900.0 | 900 | 4.7794 | 678.6667 | | 0.0405 | 1000.0 | 1000 | 4.6769 | 261.3333 | | 0.0002 | 1100.0 | 1100 | 5.4995 | 100.0 | | 0.0002 | 1200.0 | 1200 | 6.0033 | 100.0 | | 0.0002 | 1300.0 | 1300 | 6.2884 | 100.0 | | 0.0002 | 1400.0 | 1400 | 6.4744 | 100.0 | | 0.0002 | 1500.0 | 1500 | 6.5964 | 100.0 | | 0.0001 | 1600.0 | 1600 | 6.6792 | 100.0 | | 0.0001 | 1700.0 | 1700 | 6.7370 | 100.0 | | 0.0001 | 1800.0 | 1800 | 6.7735 | 100.0 | | 0.0001 | 1900.0 | 1900 | 6.7958 | 100.0 | | 0.0001 | 2000.0 | 2000 | 6.8012 | 100.0 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2