{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e55a3e58180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2228224, "_total_timesteps": 2222222, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698024392275910864, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM24Cr1cy3O61vRKte/mzbBSTdM6akRNNAAAgD8AAIA/jX2MPZxdXLyVHZG9++bwvK+1OL0YvU6+AACAPwAAgD/Ns2q9uB6ducbdVjURGbsw5wi5O6pnebQAAIA/AACAP2Y/Pz5US0I+ehRBvvoCnL40X7M9g5EevQAAAAAAAAAAqj5ZvrTS4ryCHsg6lphfOaSBUT4+NAe6AACAPwAAAADN2nW9rOcYPzm0nD2Kg8e+k1cbPc6KQD0AAAAAAAAAACYctb30IgA/zVdJPXlanb7HUF+7E7HxvAAAAAAAAAAADYtvPg0O4D6OhCi+HE3cvvLqTz6+4ze+AAAAAAAAAACA1O49fCQ+PhoKg75RyX++B5wgPBHdBr0AAAAAAAAAAJPbED6LV10/3MOHPsJ7HL81ZFQ+mx+6PQAAAAAAAAAATeEuPVJglblixls1toLRMCVq/Tfe7oi0AACAPwAAgD/zNiG+FW24Pko/Fz6K6LS+xgCsPNHzsDwAAAAAAAAAAGYxxLwUNLK6bcRIttV7CbHsgby4aCJmNQAAgD8AAIA/ZpycvPYsNLp6NFU6U+BDNRlG0bnrHH25AACAPwAAgD9mVlq8VLjLPh4nsL29aYG+kLm6vMpc8TwAAAAAAAAAAAYfAr4xmCM+otbEOhdujb5J4K08ukwjvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027009002700899565, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVAQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKkyFK02LqMAWyUTRcBjAF0lEdApO5bH+6y0XV9lChoBkdAc12eNkvsaGgHS+FoCEdApO5sYVIqb3V9lChoBkdAV3Rh8YyftmgHS6NoCEdApO6VS0jTrnV9lChoBkdAcEfeyAxzrGgHS/JoCEdApO8aHTI/7nV9lChoBkdAcRj8DB/I82gHTU4BaAhHQKTvJxG2Cul1fZQoaAZHQHE7NNahYeVoB0v9aAhHQKTvYVIqbz91fZQoaAZHQG4xKwQlKK5oB00WAWgIR0Ck74/mT1TSdX2UKGgGR0ByDea3I+4caAdNJAFoCEdApO+jC+De03V9lChoBkdAcMo3K0UoKGgHS/NoCEdApO+zD8+A3HV9lChoBkdAdBn6HCXQdGgHS+1oCEdApO/Gr8zhxnV9lChoBkdAcxn7qY7aI2gHS/hoCEdApPCBJkGzKXV9lChoBkdAcbCz1schkmgHS9loCEdApPDybjLjgnV9lChoBkdAckpyHEdeY2gHS+loCEdApPD7xgAp8XV9lChoBkdAbrvGT9sJpmgHTQQBaAhHQKTxDKPGQ0Z1fZQoaAZHQHKaI8yN4qxoB00bAWgIR0Ck8ReU6gdwdX2UKGgGR0BxRgxUNrj6aAdNHwFoCEdApPGNh/iHZnV9lChoBkdAc0G9FWn0kGgHS+9oCEdApPGpIBikPHV9lChoBkdAcJFMERrad2gHS/toCEdApPGk1VHWjHV9lChoBkdAcVJuXNTtLWgHTQgBaAhHQKTxvbblA/t1fZQoaAZHQHElo46wMYxoB0v1aAhHQKTyQRjjJdV1fZQoaAZHQHMO4UN8VpNoB0vzaAhHQKTycjGDL8t1fZQoaAZHQHDlCsS00FdoB00XAWgIR0Ck8pyNn5BUdX2UKGgGR0BvNCDCgsbvaAdL8WgIR0Ck8qph4MWodX2UKGgGR0BzFc7nxJ/YaAdL/GgIR0Ck8rojv/ipdX2UKGgGR0ByLnVJ+UhWaAdL9mgIR0Ck8thFd9lVdX2UKGgGR0Bx8Ltw71ZlaAdNBAFoCEdApPLq/M4cWHV9lChoBkdAcPM2NvOyFGgHS+doCEdApPNRJqZc9nV9lChoBkdAcvHOMERramgHS+FoCEdApPOgrvsqrnV9lChoBkdAcDMPOpsGgWgHS99oCEdApPOpGOMl1XV9lChoBkdAce2tYB/7SGgHS+9oCEdApPPjvb48EHV9lChoBkdAcTFRWcSXdGgHS9VoCEdApPQV9a2Wp3V9lChoBkdAcCnqJMxoI2gHTQwBaAhHQKT0HA44p+d1fZQoaAZHQG5y2912aDxoB0vsaAhHQKT0U5avA451fZQoaAZHQHB1Qw0waitoB00MAWgIR0Ck9M8NYr8SdX2UKGgGR0Bv/z6zmfXgaAdL9GgIR0Ck9ZHZCfHxdX2UKGgGR0Bw8qYzBRAKaAdNFQFoCEdApPWc5U96knV9lChoBkdAcPX23rleW2gHS+1oCEdApPWcmShaknV9lChoBkdAcUilAeJYT2gHTRQBaAhHQKT108Zk0791fZQoaAZHQHMfRCUornVoB00CAWgIR0Ck9dRo7FKkdX2UKGgGR0BxNzhgmZ3LaAdL+2gIR0Ck9e+TvAoHdX2UKGgGR0AxIC5mRNh3aAdLcWgIR0ClAFNga3qidX2UKGgGR0BupIrOJLuhaAdL4GgIR0ClAJCmMwUQdX2UKGgGR0Bxwkr1/Ue/aAdL62gIR0ClANnDBMzudX2UKGgGR0Bw1g3IdU83aAdNNQFoCEdApQEAd8zAOHV9lChoBkdAcJW8zyjHn2gHS+1oCEdApQGbn7pFC3V9lChoBkdAbjU2P1ct5GgHS/9oCEdApQGhKtga33V9lChoBkdAcmpCfpUxVWgHS+doCEdApQHsGLUCrHV9lChoBkdAcH961b7j1mgHTQYBaAhHQKUCIEPDpC91fZQoaAZHQG8Q4EW69TRoB0voaAhHQKUD1BHCoCN1fZQoaAZHQHDpOpCKJl9oB0vcaAhHQKUD5qxC6Yp1fZQoaAZHQG73JPZZjhFoB0vuaAhHQKUD8xsVLzx1fZQoaAZHQHJO8RQJokBoB0vAaAhHQKUEMg8r7O51fZQoaAZHQHGeAIhQm/poB00AAWgIR0ClBD+Myad+dX2UKGgGR0BzQHuCwr1/aAdNZwJoCEdApQSuA3DNyHV9lChoBkdAc4lTspoboGgHTQoBaAhHQKUEuq5sj3V1fZQoaAZHQHFDdznzQNVoB00BAWgIR0ClBLr876pHdX2UKGgGR0Bv538MuvlmaAdL4GgIR0ClBOGz0HyFdX2UKGgGR0BubvszEaVEaAdL6mgIR0ClBS3E61b8dX2UKGgGR0BwfsQEpy6uaAdL42gIR0ClBZNcv/R3dX2UKGgGR0Bybj9/BnBdaAdL6GgIR0ClBaYmb9ZSdX2UKGgGR0Bw2HUYsNDuaAdNDgFoCEdApQW2Q8wHq3V9lChoBkdAcID4mCyyEGgHS+loCEdApQXTLjghr3V9lChoBkdAcFbzcRDkVGgHS/poCEdApQYnF5v9+HV9lChoBkdAb58s7uDzy2gHS/BoCEdApQc9jbzshXV9lChoBkdAcYGaS9ugpWgHS/VoCEdApQeGG0u14XV9lChoBkdAcMcWHDaXbGgHS/ZoCEdApQeU9ECvHXV9lChoBkdAcPLX7tRekmgHS85oCEdApQeXEjxCpnV9lChoBkdAcqj6JqIrOWgHS9xoCEdApQedgv114nV9lChoBkdAcX6E1l5GBmgHTQ0BaAhHQKUHqCTUy591fZQoaAZHQG5moVdonKJoB0vmaAhHQKUHspkwvg51fZQoaAZHQHEImlImPYFoB0vKaAhHQKUH16t1ZDB1fZQoaAZHQHLhgDifg75oB0vZaAhHQKUIxS1E3Kl1fZQoaAZHQHDqgQcxTKloB0v3aAhHQKUJEzAvcrR1fZQoaAZHQG6+RJul41RoB00AAWgIR0ClCSDQRf4RdX2UKGgGR0By1kfhddE9aAdNCAFoCEdApQkoSOBDonV9lChoBkdASO/iT+vQnmgHS51oCEdApQno150KZ3V9lChoBkdAc12Dzyz5XWgHTRsBaAhHQKUKJtAs0551fZQoaAZHQHG0CxiXpnpoB0vkaAhHQKUK6aw2VFB1fZQoaAZHQHA02cawUxpoB0v+aAhHQKUK9sfq5b11fZQoaAZHQHF9qmwaBI5oB0vqaAhHQKUK+72criF1fZQoaAZHQHPyN7v5P/JoB0vsaAhHQKULBVyWAwx1fZQoaAZHQG+Z+iBXjlxoB0vraAhHQKULRpEhJRR1fZQoaAZHQHHAOvhZQpFoB00FAWgIR0ClC03aakRBdX2UKGgGR0BwprWI42jxaAdNEgJoCEdApQtekSElFHV9lChoBkdAcjn0TURWcWgHTQoBaAhHQKULewwCbMJ1fZQoaAZHQHMID/MnqmloB0vlaAhHQKUMB2criER1fZQoaAZHQGLjnBtUGV1oB03oA2gIR0ClDBAGjbi7dX2UKGgGR0Bvtr08NhE0aAdL+WgIR0ClDJZqmCRPdX2UKGgGR0BwMogDA8B/aAdL+2gIR0ClDKNm16VudX2UKGgGR0BwmgAzYVZcaAdL4mgIR0ClDP08vEjxdX2UKGgGR0BuNSClJpWWaAdL72gIR0ClDV9alk6LdX2UKGgGR0BzH4l4TsY3aAdNRAFoCEdApQ2D83uNP3V9lChoBkdAcd/ys0YTCmgHS91oCEdApQ3Gg+Qlr3V9lChoBkdAciZPf8/D+GgHS8JoCEdApQ3HPTodMnV9lChoBkdAcZJ6O5rgwWgHS+poCEdApQ4JNATqS3V9lChoBkdAcdhhMrVe8mgHS9xoCEdApQ4Ysd1dPnV9lChoBkdAc6wSwW3z+WgHS9toCEdApQ4uYIBzWHV9lChoBkdAcndqd6LOzWgHS/9oCEdApQ5Guq3mWHV9lChoBkdAcXxL8aXKKmgHTQ4BaAhHQKUOc/oJRfp1fZQoaAZHQHBW1OoHcDdoB00MAWgIR0ClD1Kv/zasdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 544, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}