--- license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-large-ner-new results: [] --- # roberta-large-ner-new This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1106 - Precision: 0.9670 - Recall: 0.9604 - F1: 0.9637 - Accuracy: 0.9600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1241 | 0.71 | 5000 | 0.1161 | 0.9618 | 0.9505 | 0.9561 | 0.9521 | | 0.0993 | 1.42 | 10000 | 0.1132 | 0.9633 | 0.9568 | 0.9600 | 0.9562 | | 0.0812 | 2.13 | 15000 | 0.1223 | 0.9662 | 0.9574 | 0.9618 | 0.9580 | | 0.074 | 2.84 | 20000 | 0.1118 | 0.9661 | 0.9607 | 0.9634 | 0.9598 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0