--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-ner results: [] --- # distilbert-base-uncased-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1419 - Precision: 0.9526 - Recall: 0.9431 - F1: 0.9479 - Accuracy: 0.9434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2866 | 0.14 | 500 | 0.1970 | 0.9329 | 0.9213 | 0.9271 | 0.9212 | | 0.198 | 0.28 | 1000 | 0.1851 | 0.9412 | 0.9218 | 0.9314 | 0.9253 | | 0.1892 | 0.43 | 1500 | 0.1772 | 0.9431 | 0.9250 | 0.9340 | 0.9280 | | 0.179 | 0.57 | 2000 | 0.1697 | 0.9440 | 0.9296 | 0.9367 | 0.9313 | | 0.1719 | 0.71 | 2500 | 0.1618 | 0.9453 | 0.9330 | 0.9391 | 0.9339 | | 0.1718 | 0.85 | 3000 | 0.1587 | 0.9443 | 0.9351 | 0.9397 | 0.9351 | | 0.1664 | 0.99 | 3500 | 0.1569 | 0.9486 | 0.9340 | 0.9412 | 0.9361 | | 0.1504 | 1.14 | 4000 | 0.1566 | 0.9480 | 0.9356 | 0.9417 | 0.9368 | | 0.1479 | 1.28 | 4500 | 0.1539 | 0.9492 | 0.9369 | 0.9430 | 0.9381 | | 0.1467 | 1.42 | 5000 | 0.1501 | 0.9499 | 0.9383 | 0.9441 | 0.9391 | | 0.1478 | 1.56 | 5500 | 0.1489 | 0.9513 | 0.9368 | 0.9440 | 0.9390 | | 0.147 | 1.7 | 6000 | 0.1457 | 0.9503 | 0.9402 | 0.9452 | 0.9407 | | 0.1453 | 1.85 | 6500 | 0.1447 | 0.9510 | 0.9408 | 0.9459 | 0.9412 | | 0.1384 | 1.99 | 7000 | 0.1442 | 0.9521 | 0.9405 | 0.9463 | 0.9415 | | 0.1325 | 2.13 | 7500 | 0.1446 | 0.9494 | 0.9441 | 0.9467 | 0.9425 | | 0.13 | 2.27 | 8000 | 0.1467 | 0.9524 | 0.9403 | 0.9463 | 0.9416 | | 0.1286 | 2.41 | 8500 | 0.1435 | 0.9501 | 0.9440 | 0.9470 | 0.9427 | | 0.1311 | 2.56 | 9000 | 0.1446 | 0.9529 | 0.9417 | 0.9473 | 0.9427 | | 0.1258 | 2.7 | 9500 | 0.1438 | 0.9528 | 0.9425 | 0.9476 | 0.9431 | | 0.1257 | 2.84 | 10000 | 0.1437 | 0.9527 | 0.9431 | 0.9479 | 0.9434 | | 0.1289 | 2.98 | 10500 | 0.1420 | 0.9526 | 0.9430 | 0.9478 | 0.9433 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0