import torch from PIL import Image from torchvision import transforms from architecture import ResNetLungCancer import gradio as gr device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = ResNetLungCancer(num_classes=4) model.load_state_dict(torch.load('Model/lung_cancer_detection_model.pth', map_location=device)) model = model.to(device) model.eval() preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) class_names = ['Adenocarcinoma', 'Large Cell Carcinoma', 'Normal', 'Squamous Cell Carcinoma'] def predict(image): image = Image.fromarray(image.astype('uint8'), 'RGB') input_tensor = preprocess(image).unsqueeze(0).to(device) with torch.no_grad(): output = model(input_tensor) predicted_class = torch.argmax(output, dim=1).item() return class_names[predicted_class] iface = gr.Interface( fn=predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=1), examples=[ ["Data/test/large.cell.carcinoma/000108.png"], ["Data/test/normal/7 - Copy (3).png"] ] ) iface.launch(share=True)