
Model Card for CodeT5: Identifier-Aware Unified Pre-trained
Encoder-Decoder Models for Code Understanding and Generation

The CodeT5 programming language model employs a
unified encoder-decoder framework to support
multiple code intelligence downstream applications
including both understanding and generation tasks.

On this model card, you can learn more about how
this model was trained, its capabilities, its intended
use, and its limitations.

Model Details
Organization Model date
Salesforce Research September 2, 2021

Model type Input
Programming language model Code, text, or both

Information about parameters
CodeT5-small (60 million), CodeT5-base (220 million)

Output
Code or text. The model supports 4 generation tasks
(code summarization, code generation, translation, and
refinement) & 2 understanding tasks (code defect and
clone detection) in the CodeXGLUE benchmark.

Read the full paper here:
https://arxiv.org/abs/2109.00859

Access the public code here:
https://github.com/salesforce/CodeT5

Citation details:
Title: CodeT5: Identifier-aware Unified

Pre-trained Encoder-Decoder Models for
Code Understanding and Generation

Author: Yue Wang, Weishi Wang, Shafiq Joty,
Steven C.H. Hoi

Conference: Proceedings of the 2021 Conference on
Empirical Methods in Natural Language
Processing (EMNLP 2021)

Year: 2021

License Questions/Comments
BSD 3-Clause codeT5@salesforce.com

Intended Use

Primary intended use
1. Deployment as an AI-powered coding assistant or

reviewer to boost the productivity of software
developers. Use cases include but are not limited to:

a. Code summarization for better software
understanding and maintenance;

b. Code autocompletion or text-to-code
generation to accelerate software development;

c. Code defect detection and refinement for
automatic bug repair.

2. Improvement of other code intelligence applications
through fine-tuning on another task or other data,
e.g., fine-tuning CodeT5 to generate API usage
descriptions.

3. Enhancement in the field of programming language
processing to push towards a better understanding
of code, including how to better capture
code-specific knowledge and balance many code
intelligence tasks.

Primary intended users
● Software developers
● NLP and software engineering researchers

Out-of-scope use cases
● CodeT5 should not be used in real-world software

development processes (such as synthesizing
programs) without human supervision.

● It should not be used to collect, track, or create
software to track, sensitive information such as:

○ financial information, such as credit or debit card
numbers, any related security codes or passwords,
and bank account numbers;

○ personal information, such as specific people's
names and other profile data; or

○ sensitive data, such as government-issued
identification numbers, racial or ethnic origin,
political opinions, religious or philosophical
beliefs, and health information.

● This software should not be used to promote or
profit from:
○ violence, hate, and division;
○ environmental destruction;
○ abuse of human rights; or
○ the destruction of people's physical and mental

health.

Training Data

The model is trained on 8.35 million code snippets: 3.16
million bimodal instances (a function and its natural
language comment in English) and 5.19 million
unimodal (function-only) instances. The training data
contains 6 programming languages (Python, Java,
JavaScript, PHP, Ruby, Go) from CodeSearchNet data
and 2 additional programming languages (C and C#)
from Google BigQuery data. See the paper for details.

Metrics

We follow the CodeXGLUE benchmark (described here)
to measure different downstream tasks. We employ
smoothed BLEU-4 for code summarization (19.77),
exact match (EM) accuracy, BLEU-4, and CodeBLEU for
code generation (22.7, 41.48, 44.10 respectively), exact
match accuracy and BLEU-4 for code translation (65.90
EM, 84.03 BLEU for Java to C#) and code refinement
(14.18 EM, 88.90 BLEU), accuracy for code defect
detection (65.78) and F1 score for code clone detection
(97.2). Please see the paper for more details.

Ethical Considerations

● Dataset bias. The training datasets in our study are
source code including user-written comments from
open-source and publicly-available Github
repositories that do not tie to any specific
application. However, the datasets possibly encode
some stereotypes like race and gender from the text
comments or the source code including its variables,
functions, and class names. As such, social biases
would be intrinsically embedded into the models
trained on them.

https://github.com/microsoft/CodeXGLUE
https://arxiv.org/abs/2109.00859
https://github.com/salesforce/CodeT5
https://github.com/salesforce/CodeT5/blob/main/LICENSE.txt
mailto:codeT5@salesforce.com
https://github.com/github/CodeSearchNet
https://console.cloud.google.com/marketplace/details/github/github-repos
https://arxiv.org/pdf/2109.00859.pdf
https://arxiv.org/abs/2102.04664

● Computational cost. Our model pre-training requires
non-trivial computational resources, though we have
tried our best to carefully design our experiments and
improve experiments to save unnecessary
computation costs. In addition, we experimented on
Google Cloud Platform which purchases carbon
credits to reduce its carbon footprint -- training
CodeT5-base produced around 49.25 kg CO₂ which
was totally offset by the provider. Furthermore, we
release our pre-trained models publicly to avoid
repeated training for the code intelligence research
community.

● Automation bias. As CodeT5 can be deployed to
provide assistance like code generation to aid
developers, automation bias of machine learning
systems should be carefully considered, especially for
developers who tend to over-rely on the
model-generated outputs. These systems might
produce functions that superficially appear correct
but do not align with the developer’s intents. If
developers unintentionally adopt these incorrect
code suggestions, it might require longer debugging
time and even lead to some significant safety issues.

● Security implications. We trained CodeT5 on existing
code corpus originally collected from public Github
repositories. Pre-trained models might encode some
sensitive information (e.g., personal identification
numbers) from the training data. Though we have
conducted multi-rounds of data cleaning to mitigate
this before training our models, it is still possible that
some sensitive information was not or cannot be
completely removed. Besides, due to the
non-deterministic nature of generation models like
CodeT5, the model might produce some vulnerable
code to harmfully affect the software and even be
able to benefit more advanced malware development
when deliberately misused.

Caveats and Recommendations

● We recommend that practitioners using CodeT5 in
real-world scenarios bear in mind that its generation
outputs should be only taken as references and that
domain experts be engaged for further correctness-
and security-checking.

● We also recommend that the data be further
screened to fine-tune CodeT5, including sensitive
data cleaning and bias mitigation.

● The model is trained on a limited number of
programming languages: primarily Python, Java,
JavaScript, PHP, Ruby, Go, C, and C#. A proposed
future area of research would be to train the model
on more languages.

